Principles of Highway Engineering and Traffic Analysi (NEW!!)
Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 25P
To determine

The user equilibrium, system optimal route flow and total travel time.

Blurred answer
Students have asked these similar questions
Two routes connect an origin-destination pair with performance functions t₁ = 5 + (x₁/2)² and t₂ = 7+ (x2/4)² (with t's in minutes and x's in thousands of vehicles per hour). It is known that at user equilibrium, 75% of the origin-destination demand takes route 1. What percentage would take route 1 if a system-optimal solution were achieved, and how much travel time would be saved?
8.21 Three routes connect an origin and destination with performance functions t₁ = 2 +0.5x₁,₂ = 1 + x2 and 13 = 4 + 0.2x, (with f's in minutes and x's in thousands of vehicles per hour). Determine user- equilibrium flows if the total origin-to-destination demand is (a) 5000 veh/h.
hree routes connect an origin and a destination with performance functions: ?1=8+0.5?1; ?2=1+2?2; and ?3=3+0.75?3; with the x’s being the traffic volume expressed in thousands of vehicles per hour and t’s being the travel time expressed in minutes. If the peak hour traffic demand is 3400 vehicles, determine user equilibrium traffic flows. [Hint: Note that one of the paths will not be used under the equilibrium condition
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning