Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 9.12, Problem 133P

a)

To determine

The pressure at the turbine exit.

a)

Expert Solution
Check Mark

Answer to Problem 133P

The pressure at the turbine exit is 55.2psia.

Explanation of Solution

Draw the Ts diagram for pure jet engine as shown in Figure (1).

Thermodynamics: An Engineering Approach, Chapter 9.12, Problem 133P

Consider that the aircraft is stationary, and the velocity of air moving towards the aircraft is V1=900ft/s, the air will leave the diffuser with a negligible velocity (V20).

Diffuser (For process 1-2):

Write the expression for the energy balance equation for the diffuser.

E˙inE˙out=ΔE˙system (I)

Here, the rate of energy entering the system is E˙in, rate of energy leaving the system is E˙out, and the rate of change in the energy of the system is ΔE˙system.

Write the temperature and pressure relation for the process 1-2.

P2=P1(T2T1)k/(k1) (II)

Here, the specific heat ratio of air is k, pressure at state 1 is P1, pressure at state 2 is P2, temperature at state 1 is T1 and temperature at state 2 is T2.

Compressor (For process 2-3)

Write the pressure relation using the pressure ratio for the process 2-3.

P3=P4=(rp)(P2) (III)

Here, the pressure ratio is rp, pressure at state 3 is P3 and pressure at state 4 is P4.

Write the temperature and pressure relation for the process 2-3.

T3=T2(P3P2)(k1)/kT3=T2(rp(k1)/k) (IV)

Here, temperate at state 3 is T3.

Turbine (For process 4-5)

Write the temperature relation for the compressor and turbine.

wcomp,in=wturb,outh3h2=h4h5cp(T3T2)=cp(T4T5)

T3T2=T4T5T5=T4T3+T2 (V)

Here, the specific heat at constant pressure is cp, enthalpy at state 2 is h2, enthalpy at state 3 is h3, enthalpy at state 4 is h4, enthalpy at state 5 is h5, work input to the compressor is wcomp,in, work output from turbine is wturb,out, temperature at state 4 is T4 and temperature at state 5 is T5.

Write the temperature and pressure relation for the process 4-5.

P5=P4(T5T4)k/(k1) (VI).

Conclusion:

From Table A-2E, “Ideal-gas specific heats of various common gases”, obtain the following values for air at room temperature.

k=1.4cp=0.24Btu/lbmR

The rate of change in the energy of the system (ΔE˙system) is zero for the steady state system.

Substitute 0 for ΔE˙system in Equation (I).

E˙inE˙out=0

E˙in=E˙outh1+V122=h2+V2220=h2h1+V22V1220=cp(T2T1)V22V122 (VII).

Here, inlet velocity is V1 or Vinlet , velocity at state 2 is V2 , temperate at state 2 is T2 and temperate at state 1 is T1.

Substitute 0 for V2, 10°F for T1, 900ft/s for V1, and 0.24Btu/lbmR for cp in Equation (VII).

0=0.24Btu/lbmR(T2(10°F))(0)(900ft/s)22T2=(10+460)R+(900ft/s)2(2)(0.24Btu/lbmR)(1Btu/lbm25,037ft2/s2)T2=537.4R

Substitute 7psia for P1, 537.3 R for T2, 10°F for T1, and 1.4 for k in Equation (II).

P2=(7psia)(537.3R10°F)1.4/1.41=(7psia)(537.3R(10+460)R)1.4/1.41=11.19psia

Substitute 13 for rp, and 11.19psia for P2 in Equation (III).

P3=P4=(13)(11.19psia)=145psia

Substitute 537.4 R for T2, 1.4 for k, and 13 for rp in Equation (IV).

T3=(537.4R)(13)1.41/1.4=1118.3R

Substitute 2400R for T4, 1118.3 R for T3, and 537.4 R for T2 in Equation (V).

T5=(2400R1118.3R+537.4R)=1819.1R

Substitute 1819.1R for T5, 2400R for T4, 145.5psia for P4, and 1.4 for k in Equation (VI).

P5=(145.5psia)(1819.1R2400R)1.4/1.41P5=Pexit=55.2psia

Thus, the pressure at the turbine exit is 55.2psia.

b)

To determine

The exit velocity of the exhaust gases.

b)

Expert Solution
Check Mark

Answer to Problem 133P

The exit velocity of the exhaust gases is 3121ft/s.

Explanation of Solution

Nozzle (For process 5-6)

Write the temperature and pressure relation for the isentropic process 4-6.

T6=T4(P6P4)(k1)/k (VIII)

Here, pressure at state 6 is P6 and temperature at state 6 is T6.

Write the energy balance equation for the nozzle.

E˙inE˙out=ΔE˙system (IX)

Conclusion:

Substitute 1819.1R for T5, 1.4 for k, 7psia for P6, and 55.2psia for P5 in Equation(VIII).

T6=(1819.1R)(7psia55.2psia)1.41/1.4=1008.4R

The rate of change in the energy of the system (ΔE˙system) is zero for the steady state system.

Substitute 0 for ΔE˙system Equation (IX).

E˙in=E˙outh5+V522=h6+V6220=h6h5+V62V5220=cp(T6T5)V62V522 (X)

Here, velocity at stat 5 is V5, exit velocity is V6 or Vexit and temperate at state 6 is T6.

Since, V5=V2

Substitute 1819.1R for T5, 1008.6R for T6, and 0.24Btu/lbmR for cp in Equation (X).

0=0.24Btu/lbmR(1819.1R1008.6R)V6202

V6=(2)(0.24Btu/lbmR)(1819.1R1008.6R)(25,037ft2/s21Btu/lbm)V6=Vexit=3121ft/s

Thus, the exit velocity of the exhaust gases is 3121ft/s.

c)

To determine

The propulsive efficiency of the turbojet engine.

c)

Expert Solution
Check Mark

Answer to Problem 133P

The propulsive efficiency of the turbojet engine is 25.9%.

Explanation of Solution

Write the expression to calculate the propulsive work done per unit mass by the turbojet engine (wp).

wp=(VexitVinlet)Vaircraft (XI).

Here, the velocity of the aircraft is Vaircraft, the velocity of the inlet air is Vinlet, and the exit velocity of the exhaust gases is Vexit.

Write the expression to calculate the heating value of the fuel per unit mass for the turbojet engine (qin).

qin=h4h3=cp(T4T3) (XII).

Here, temperature at state 4 is T4 , temperature at state 3 is T3 , enthalpy at state 4 is h4 and enthalpy at state 3 is h3.

Write the expression to calculate the propulsive efficiency of the turbojet engine (ηp).

ηp=wpqin (XIII).

Conclusion.

Substitute 3121ft/s for Vexit, 900ft/s for Vinlet, and 900ft/s for Vaircraft in Equation (XI).

wp=(3121ft/s900ft/s)×(900ft/s)=(2221ft/s)×(900ft/s)=1998900ft2/s2(1Btu/lbm25,037ft2/s2)=79.83Btu/lbm

Substitute 0.24Btu/lbmR for cp, 1118.3R for T3, and 2400R for T4 in Equation (XII).

qin=(0.24Btu/lbmR)(2400R1118.3R)=307.6Btu/lbm

Substitute 307.6Btu/lbm for qin, and 79.8Btu/lbm for wp in Equation (XIII).

ηp=79.8Btu/lbm307.6Btu/lbm=0.259×100%=25.9%

Thus, the propulsive efficiency of the turbojet engine is 25.9%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and −32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine the velocity of the exhaust gases,
A turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and −32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine the rate of fuel consumption.
A turbojet is flying with a velocity of 900 ft/s at an altitude of 20,000 ft, where the ambient conditions are 7 psia and 10°F. The pressure ratio across the compressor is 13, and the temperature at the turbine inlet is 2400 R. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine the velocity of the exhaust gases.

Chapter 9 Solutions

Thermodynamics: An Engineering Approach

Ch. 9.12 - Prob. 11PCh. 9.12 - Can any ideal gas power cycle have a thermal...Ch. 9.12 - Prob. 13PCh. 9.12 - Prob. 14PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Prob. 19PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - The thermal energy reservoirs of an ideal gas...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Determine the mean effective pressure of an ideal...Ch. 9.12 - Reconsider Prob. 932E. Determine the rate of heat...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 36PCh. 9.12 - A spark-ignition engine has a compression ratio of...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 7....Ch. 9.12 - Prob. 39PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Someone has suggested that the air-standard Otto...Ch. 9.12 - Repeat Prob. 942 when isentropic processes are...Ch. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Prob. 55PCh. 9.12 - Prob. 56PCh. 9.12 - Prob. 57PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 60PCh. 9.12 - Prob. 61PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Prob. 67PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 69PCh. 9.12 - Prob. 70PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 75PCh. 9.12 - Prob. 76PCh. 9.12 - Prob. 77PCh. 9.12 - Prob. 78PCh. 9.12 - Prob. 79PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A stationary gas-turbine power plant operates on a...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 87PCh. 9.12 - Prob. 88PCh. 9.12 - Repeat Prob. 988 when the isentropic efficiency of...Ch. 9.12 - Repeat Prob. 988 when the isentropic efficiency of...Ch. 9.12 - Repeat Prob. 988 when the isentropic efficiencies...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - Repeat Prob. 993 for a pressure ratio of 15.Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - A simple ideal Brayton cycle uses argon as the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - A gas-turbine power plant operating on the simple...Ch. 9.12 - Prob. 99PCh. 9.12 - Prob. 100PCh. 9.12 - Prob. 101PCh. 9.12 - Prob. 102PCh. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - A gas turbine for an automobile is designed with a...Ch. 9.12 - Rework Prob. 9105 when the compressor isentropic...Ch. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 109PCh. 9.12 - Prob. 111PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - Prob. 116PCh. 9.12 - Prob. 117PCh. 9.12 - Prob. 118PCh. 9.12 - Prob. 119PCh. 9.12 - Prob. 120PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - A gas turbine operates with a regenerator and two...Ch. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - Prob. 130PCh. 9.12 - Prob. 131PCh. 9.12 - Air at 7C enters a turbojet engine at a rate of 16...Ch. 9.12 - Prob. 133PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 137PCh. 9.12 - Prob. 138PCh. 9.12 - Reconsider Prob. 9138E. How much change would...Ch. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - An air-standard Diesel cycle has a compression...Ch. 9.12 - Prob. 144PCh. 9.12 - Prob. 145PCh. 9.12 - Prob. 146PCh. 9.12 - Prob. 147PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 150PCh. 9.12 - A gas turbine operates with a regenerator and two...Ch. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 153PCh. 9.12 - An air-standard cycle with variable specific heats...Ch. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 158RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 160RPCh. 9.12 - Prob. 161RPCh. 9.12 - Consider an engine operating on the ideal Diesel...Ch. 9.12 - Repeat Prob. 9162 using argon as the working...Ch. 9.12 - Prob. 164RPCh. 9.12 - Prob. 165RPCh. 9.12 - Prob. 166RPCh. 9.12 - Prob. 167RPCh. 9.12 - Consider an ideal Stirling cycle using air as the...Ch. 9.12 - Prob. 169RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 171RPCh. 9.12 - A Brayton cycle with a pressure ratio of 15...Ch. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 176RPCh. 9.12 - Prob. 177RPCh. 9.12 - Prob. 180RPCh. 9.12 - Prob. 181RPCh. 9.12 - Prob. 182RPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - A Carnot cycle operates between the temperature...Ch. 9.12 - Prob. 194FEPCh. 9.12 - Prob. 195FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 197FEPCh. 9.12 - Prob. 198FEPCh. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY