Organic Chemistry (9th Edition)
Organic Chemistry (9th Edition)
9th Edition
ISBN: 9780321971371
Author: Leroy G. Wade, Jan W. Simek
Publisher: PEARSON
Question
Book Icon
Chapter 12, Problem 12.18SP

(a)

Interpretation Introduction

To determine: The logical fragmentation reactions to account for the given ion observed in the mass spectra.

Interpretation: The logical fragmentation reactions to account for the given ion observed in the mass spectra are to be given.

Concept introduction: Mass spectroscopy provides a reliable molecular weight for an unknown compound and also gives us the information about the molecular formula as well.

Fragmentation gives the resonance stabilized cations whenever possible. Loss of a small molecule is usually indicated by a fragment peak having an even mass number corresponding to loss of an even mass number. Fragmentation produces the most stable carbocation and radicals when occurs in alkane, but fragmentation at branching is mostly favoured.

(b)

Interpretation Introduction

To determine: The logical fragmentation reactions to account for the given ion observed in the mass spectra.

Interpretation: The logical fragmentation reactions to account for the given ion observed in the mass spectra are to be given.

Concept introduction: Mass spectroscopy provides a reliable molecular weight for an unknown compound and also gives us the information about the molecular formula as well.

Fragmentation gives the resonance stabilized cations whenever possible. Loss of a small molecule is usually indicated by a fragment peak having an even mass number corresponding to loss of an even mass number. Fragmentation produces the most stable carbocation and radicals when occurs in alkane, but fragmentation at branching is mostly favoured.

(c)

Interpretation Introduction

To determine: The logical fragmentation reactions to account for the given ion observed in the mass spectra.

Interpretation: The logical fragmentation reactions to account for the given ion observed in the mass spectra are to be given.

Concept introduction: Mass spectroscopy provides a reliable molecular weight for an unknown compound and also gives us the information about the molecular formula as well.

Fragmentation gives the resonance stabilized cations whenever possible. Loss of a small molecule is usually indicated by a fragment peak having an even mass number corresponding to loss of an even mass number. Fragmentation produces the most stable carbocation and radicals when occurs in alkane, but fragmentation at branching is mostly favoured.

(d)

Interpretation Introduction

To determine: The logical fragmentation reactions to account for the given ion observed in the mass spectra.

Interpretation: The logical fragmentation reactions to account for the given ion observed in the mass spectra are to be given.

Concept introduction: Mass spectroscopy provides a reliable molecular weight for an unknown compound and also gives us the information about the molecular formula as well.

Fragmentation gives the resonance stabilized cations whenever possible. Loss of a small molecule is usually indicated by a fragment peak having an even mass number corresponding to loss of an even mass number. Fragmentation produces the most stable carbocation and radicals when occurs in alkane, but fragmentation at branching is mostly favoured.

(e)

Interpretation Introduction

To determine: The logical fragmentation reactions to account for the given ion observed in the mass spectra.

Interpretation: The logical fragmentation reactions to account for the given ion observed in the mass spectra are to be given.

Concept introduction: Mass spectroscopy provides a reliable molecular weight for an unknown compound and also gives us the information about the molecular formula as well.

Fragmentation gives the resonance stabilized cations whenever possible. Loss of a small molecule is usually indicated by a fragment peak having an even mass number corresponding to loss of an even mass number. Fragmentation produces the most stable carbocation and radicals when occurs in alkane, but fragmentation at branching is mostly favoured.

(f)

Interpretation Introduction

To determine: The logical fragmentation reactions to account for the given ion observed in the mass spectra.

Interpretation: The logical fragmentation reactions to account for the given ion observed in the mass spectra are to be given.

Concept introduction: Mass spectroscopy provides a reliable molecular weight for an unknown compound and also gives us the information about the molecular formula as well.

Fragmentation gives the resonance stabilized cations whenever possible. Loss of a small molecule is usually indicated by a fragment peak having an even mass number corresponding to loss of an even mass number. Fragmentation produces the most stable carbocation and radicals when occurs in alkane, but fragmentation at branching is mostly favoured.

Blurred answer
Students have asked these similar questions
8 Give logical fragmentation reactions to account for the following ions observed in these mass spectra.(a) n-octane: 114, 85, 71, 57 (b) methylcyclohexane: 98, 83 (c) 2-methylpent-2-ene: 84, 69(d) pentan-1-ol: 70, 55, 41, 31
Give logical fragmentation reactions to account for the following ions observed in these mass spectra. N-ethylaniline (PhNHCH2CH3): 121, 106, 77
8 Give logical fragmentation reactions to account for the following ions observed in these mass spectra.(a) n-octane: 114, 85, 71, 57 (b) methylcyclohexane: 98, 83
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
EBK A SMALL SCALE APPROACH TO ORGANIC L
Chemistry
ISBN:9781305446021
Author:Lampman
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning