Concept explainers
TOURISTOPIA TRAVEL
TourisTopia Travel (Triple T) is an online travel agency that specializes in trips to exotic locations around the world for groups of ten or more travelers. Triple T’s marketing manager has been working on a major revision of the homepage of Triple T’s website. The content for the homepage has been selected and the only remaining decisions involve the selection of the background color (white, green, or pink) and the type of font (Arial, Calibri, or Tahoma).
Triple T’s IT group has designed prototype homepages featuring every combination of these background colors and fonts, and it has implemented computer code that will randomly direct each Triple T website visitor to one of these prototype homepages. For three weeks, the prototype homepage to which each visitor was directed and the amount of time in seconds spent at Triple T’s website during each visit were recorded. Ten visitors to each of the prototype homepages were then selected randomly; the complete data set for these visitors is available in the DATAfile named TourisTopia.
Triple T wants to use these data to determine if the time spent by visitors to Triple T’s website differs by background color or font. It would also like to know if the time spent by visitors to the Triple T website differs by different combinations of background color and font.
Managerial Report
Prepare a managerial report that addresses the following issues.
- 1. Use
descriptive statistics to summarize the data from Triple T’s study. Based on descriptive statistics, what are your preliminary conclusions about whether the time spent by visitors to the Triple T website differs by background color or font? What are your preliminary conclusions about whether time spent by visitors to the Triple T website differs by different combinations of background color and font? - 2. Has Triple T used an observational study or a controlled experiment? Explain.
- 3. Use the data from Triple T’s study to test the hypothesis that the time spent by visitors to the Triple T website is equal for the three background colors. Include both factors and their interaction in the ANOVA model, and use α = .05.
- 4. Use the data from Triple T’s study to test the hypothesis that the time spent by visitors to the Triple T website is equal for the three fonts. Include both factors and their interaction in the ANOVA model, and use α = .05.
- 5. Use the data from Triple T’s study to test the hypothesis that time spent by visitors to the Triple T website is equal for the nine combinations of background color and font. Include both factors and their interaction in the ANOVA model, and use α = .05.
- 6. Do the results of your analysis of the data provide evidence that the time spent by visitors to the Triple T website differs by background color, font, or combination of background color and font? What is your recommendation?

Trending nowThis is a popular solution!

Chapter 13 Solutions
Essentials Of Statistics For Business & Economics
- In a study on speed control, it was found that the main reasons for regulations were to make traffic flow efficient and to minimize the risk of danger. An area that was focused on in the study was the distance required to completely stop a vehicle at various speeds. Use the following table to answer the questions. MPH Braking distance (yrds) 5 10 10 17 20 27 30 50 40 60 50 100 60 150 70 200arrow_forwardBusinessarrow_forward3. Bayesian Inference – Updating Beliefs A medical test for a rare disease has the following characteristics: Sensitivity (true positive rate): 99% Specificity (true negative rate): 98% The disease occurs in 0.5% of the population. A patient receives a positive test result. Questions: a) Define the relevant events and use Bayes’ Theorem to compute the probability that the patient actually has the disease.b) Explain why the result might seem counterintuitive, despite the high sensitivity and specificity.c) Discuss how prior probabilities influence posterior beliefs in Bayesian inference.d) Suppose a second, independent test with the same accuracy is conducted and is also positive. Update the probability that the patient has the disease.arrow_forward
- 4. Linear Regression - Model Assumptions and Interpretation A real estate analyst is studying how house prices (Y) are related to house size in square feet (X). A simple linear regression model is proposed: The analyst fits the model and obtains: • Ŷ50,000+150X YBoB₁X + € • R² = 0.76 • Residuals show a fan-shaped pattern when plotted against fitted values. Questions: a) Interpret the slope coefficient in context. b) Explain what the R² value tells us about the model's performance. c) Based on the residual pattern, what regression assumption is likely violated? What might be the consequence? d) Suggest at least two remedies to improve the model, based on the residual analysis.arrow_forward5. Probability Distributions – Continuous Random Variables A factory machine produces metal rods whose lengths (in cm) follow a continuous uniform distribution on the interval [98, 102]. Questions: a) Define the probability density function (PDF) of the rod length.b) Calculate the probability that a randomly selected rod is shorter than 99 cm.c) Determine the expected value and variance of rod lengths.d) If a sample of 25 rods is selected, what is the probability that their average length is between 99.5 cm and 100.5 cm? Justify your answer using the appropriate distribution.arrow_forward2. Hypothesis Testing - Two Sample Means A nutritionist is investigating the effect of two different diet programs, A and B, on weight loss. Two independent samples of adults were randomly assigned to each diet for 12 weeks. The weight losses (in kg) are normally distributed. Sample A: n = 35, 4.8, s = 1.2 Sample B: n=40, 4.3, 8 = 1.0 Questions: a) State the null and alternative hypotheses to test whether there is a significant difference in mean weight loss between the two diet programs. b) Perform a hypothesis test at the 5% significance level and interpret the result. c) Compute a 95% confidence interval for the difference in means and interpret it. d) Discuss assumptions of this test and explain how violations of these assumptions could impact the results.arrow_forward
- 1. Sampling Distribution and the Central Limit Theorem A company produces batteries with a mean lifetime of 300 hours and a standard deviation of 50 hours. The lifetimes are not normally distributed—they are right-skewed due to some batteries lasting unusually long. Suppose a quality control analyst selects a random sample of 64 batteries from a large production batch. Questions: a) Explain whether the distribution of sample means will be approximately normal. Justify your answer using the Central Limit Theorem. b) Compute the mean and standard deviation of the sampling distribution of the sample mean. c) What is the probability that the sample mean lifetime of the 64 batteries exceeds 310 hours? d) Discuss how the sample size affects the shape and variability of the sampling distribution.arrow_forwardA biologist is investigating the effect of potential plant hormones by treating 20 stem segments. At the end of the observation period he computes the following length averages: Compound X = 1.18 Compound Y = 1.17 Based on these mean values he concludes that there are no treatment differences. 1) Are you satisfied with his conclusion? Why or why not? 2) If he asked you for help in analyzing these data, what statistical method would you suggest that he use to come to a meaningful conclusion about his data and why? 3) Are there any other questions you would ask him regarding his experiment, data collection, and analysis methods?arrow_forwardBusinessarrow_forward
- What is the solution and answer to question?arrow_forwardTo: [Boss's Name] From: Nathaniel D Sain Date: 4/5/2025 Subject: Decision Analysis for Business Scenario Introduction to the Business Scenario Our delivery services business has been experiencing steady growth, leading to an increased demand for faster and more efficient deliveries. To meet this demand, we must decide on the best strategy to expand our fleet. The three possible alternatives under consideration are purchasing new delivery vehicles, leasing vehicles, or partnering with third-party drivers. The decision must account for various external factors, including fuel price fluctuations, demand stability, and competition growth, which we categorize as the states of nature. Each alternative presents unique advantages and challenges, and our goal is to select the most viable option using a structured decision-making approach. Alternatives and States of Nature The three alternatives for fleet expansion were chosen based on their cost implications, operational efficiency, and…arrow_forwardBusinessarrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL

