Principles of Highway Engineering and Traffic Analysi (NEW!!)
Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
Question
Book Icon
Chapter 4, Problem 1P
To determine

The truck that will cause more pavement damage.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The truck A will cause more pavement damage.

Explanation of Solution

The truck A will cause more pavement damage.

Given:

The truck A has two singles axles.

Weight of one axle of truck A is 12,000lb .

Weight of other axle of truck A is 23,000lb .

Weight of single axle of truck B is 8000lb .

Weight of the tandem axle of truck B is 43,000lb .

The thickness of hot mix asphalt is 3inch .

The thickness of soil-cement base is 6inch .

The thickness of crushed stone sub base is 8inch .

The drainage coefficients are 1.0 .

Formula Used:

Write the expression for the structural number.

  SN=a1D1+a2D2M2+a3D3M3 …… (I)

Here, a1 is the structural layer coefficient of the hot mix asphalt wearing surface layer, a2 is the structural layer coefficient of soil-cement base layer, a3 is the structural coefficient of crushed stone sub-base layer, D1 is the thickness of the wearing surface layer, D2 is the thickness of the base layer, D3 is the thickness of the sub-base layer, M2 is the drainage coefficient for base and M3 is the drainage coefficient for sub-base.

Write the expression for equivalent singleaxle load for truck A.

  WA=AF12+AF23 ……. (II)

Here, WA is the equivalent single axle load factor for truck A, AF12 is the axle load factor for 12kip load and AF23 is the axle load factor for 23kips load.

Write the expression for equivalent single axle load for truck B.

  WB=AF8+AF43 ……. (III)

Here, WB is the equivalent single axle load factor for truck B, AF8 is the axle load factor for 8kip load and AF43 is the axle load factor for 43kips load.

Calculation:

Refer Table 4.5 “Structural-layer coefficients” of the book “Principles of Highway Engineering and traffic, 6th Edition”

For the hot-mix asphaltic concrete,

  a1=0.44

For the soil cement base,

  a2=0.2

For the crushed stone,

  a3=0.11

Substitute 0.44 for a1 , 3 for D1 , 0.2 for a2 , 6 for D2 , 1 for M2 , 0.11 for a3 , 8 for D3 and 1 for M3 in equation (I).

  SN=(0.44×3)+(0.2×6×1)+(0.11×8×1)=1.32+1.2+0.88=3.4

Consider truck A.

Refer Table 4.1 “Axle-Load Equivalency Factors for Flexible Pavements, Single Axles,and TSI=2.5 ” of the book “Principles of Highway Engineering and traffic, 6th Edition.”

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 12kips is 0.229 .

The axle load equivalency factor corresponding to pavement structural number 4 and axle load 12kips is 0.213 .

Calculate the axle load equivalency factor corresponding to pavement structural number 3.4 using interpolation.

  x=0.229[( 3.43)( 0.2290.213)43]=0.229(6.4× 10 3)=0.2226

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 22kips is 2.17 .

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 24kips is 3.09 .

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 23kips is calculated as,

  Axleloadfactor=2.17+3.092=5.262=2.63

The axle load equivalency factor corresponding to pavement structural number 4 and axle load 22kips is 2.09 .

The axle load equivalency factor corresponding to pavement structural number

  4 and axle load 24kips is

  2.89 .

The axle load equivalency factor corresponding to pavement structural number

  4 and axle load 23kips is calculated as,

  Axleloadfactor=2.09+2.892=4.982=2.49

Calculate the axle load equivalency factor corresponding to pavement structural number 3.4 and axle load 23kips using interpolation.

  x=2.63[( 3.43)( 2.632.49)43]=2.63(0.056)=2.574

Substitute 0.2226 for AF12 and 2.574 for AF23 in equation (II).

  WA=0.2226+2.574=2.7966

Consider truck B.

Refer Table 4.1 “Axle-Load Equivalency Factors for Flexible Pavements, Single Axles, and TSI=2.5 ” of the book “Principles of Highway Engineering and traffic, 6th Edition.”

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 8kips is 0.051 .

The axle load equivalency factor corresponding to pavement structural number 4 and axle load 8kips is 0.041 .

Calculate the axle load equivalency factor corresponding to pavement structural number 3.4 using interpolation.

  x=0.051[( 3.43)( 0.0510.041)43]=0.051(4× 10 3)=0.047

Refer Table 4.2 “Axle-Load Equivalency Factors for Flexible Pavements, Tandem Axles, and TSI=2.5 ” of the book “Principles of Highway Engineering and traffic, 6th Edition.”

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 42kips is 2.49 .

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 44kips is 2.99 .

The axle load equivalency factor corresponding to pavement structural number 3 and axle load 43kips is calculated as,

  Axleloadfactor=2.49+2.992=5.482=2.74

The axle load equivalency factor corresponding to pavement structural number 4 and axle load 42kips is 2.43 .

The axle load equivalency factor corresponding to pavement structural number 4 and axle load 44kips is 2.88 .

The axle load equivalency factor corresponding to pavement structural number 4 and axle load 43kips is calculated as,

  Axleloadfactor=2.43+2.882=5.312=2.655

Calculate the axle load equivalency factor corresponding to pavement structural number 3.4 and axle load 43kips using interpolation.

  x=2.74[( 3.43)( 2.742.655)43]=2.74(0.034)=2.706

Substitute 0.047 for AF8 and 2.706 for AF43 in equation (III).

  WB=0.047+2.706=2.753

Since, WA>WB . Hence, truck A will cause more damage.

Conclusion:

Thus, the truck A will cause more damage.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A northbound direction on an interstate highway consists of four lanes of flexible pavement. It is conservatively designed with a 10-inch sand-mix asphaltic surface, 10-crushed stone base, and a 10-inch crushed-stone subbase (all drainage coefficients are 1.0). The subgrade CBR is 3, the overall standard deviation is 0.4, and the reliability is 95%. The initial PSI is 4.6 and the final PSI is 2.5. Daily total northbound road traffic consists of 51,000 cars (each with two 2-kip single axles), 840 buses (each with two 20-kip single axles), and 1,000 heavy vehicles (each with one 12-kip single axle and two 34-kip tandem axles). How many years was this pavement designed to last?
You have been asked to design a flexible pavement and the following daily traffic is expected for design: 6375 passenger cars with two 2-kip single axles, 375 18-wheel trucks with one 12-kip single axle and two 32-kip tandem axles, 225 triple-trailer trucks with one 18-kip single axle and six 36-kip tandem axles, and 525 single unit trucks with one 10-kip single axle and one 24-kip tandem axle. There are 3 lanes in the design direction (conservative design is to be used). Assuming a structural number of 5.0, determine the design-lane 18-kip ESALs for the pavement projected 15-year design life with the TSI of 2.5.
A flexible pavement is designed with 5 inches of hot-mix asphalt (HMA) wearing surface, 6 inches of hot-mix asphaltic base, and 10 inches of crushed stone subbase. All drainage coefficients are 1.0. Daily traffic is 200 passes of a 20-kip single axle, 200 passes of a 40-kip tandem axle, and 80 passes of a 22-kip single axle.If the initial minus the terminal PSI is 2.0 (the TSI is 2.5), the soil resilient modulus is 3000 lb/in2, and the overall standard deviation is 0.6, what is the probability(reliability) that this pavement will last 20 years before reaching its terminal serviceability?
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning