Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.33P

Consider conditions for which a fluid with a free stream velocity of V = 1 m/s flows over a surface with a characteristic length of L = 1 m, providing an average convection heat transfer coefficient of h ¯ = 100 Wm 2 K . Calculate the dimensionless parameters N u ¯ L , R e L , P r , and j ¯ H for the following fluids: air, engine oil, mercury, and water. Assume the fluids to be at 300 K.

Blurred answer
Students have asked these similar questions
Air at 200C and at a pressure of 1 bar is flowing over a flat plate at a velocity of 3 m/s. If the plate is 280 mm wide and at 560C, calculate the following quantities at x = 280 mm given that properties of air at the bulk mean temperature 20 + 56/2= 380C are: (i) Boundary layer thickness,(ii) Local friction coefficient,(iii) Average friction coefficient,(iv) Shearing stress due to friction(v) Thickness of the boundary layer,(vi) Local convective heat transfer coefficient,(vii) Average convective heat transfer coefficient,(viii) Rate of heat transfer by convection(ix) Total drag force on the plate, and(x) Total mass flow rate through the boundary
During a cold winter day, wind at 55 km/h is blowing parallel to a 4m high and 10m long wall of a house. If the air outside is at 5 degrees Celsius and the surface temperature of the wall is 12 degrees Celsius , determine the rate of heat loss from the wall by convection. What would your answer be if the wind velocity has doubled?   From Table A-1:thermal conductivity, k = 0.0246 W/m degrees Celsiusviscosity, v = 1.4 x 10^-5 m^2/sPrandtl no. Pr = 0.717
A solid ball is dropped into a water container for cooling. The ball has a diameter of D = 4 mm and sinks at a constant terminal velocity of Ut = 0.01 m/s. The thermophysical properties of the solid ball are: density ρ = 8000 kg/m3, thermal conductivity k = 200 W/m · K, and specific heat c = 1000 J/kg · K. The thermophysical properties of the water are: density ρw = 1000 kg/m3, kinematic viscosity νw = 10^(−6) m^(2)/s, thermal conductivity kw = 0.6 W/m · K, and Prandtl number Pr = 7. The vertical distance for the ball to sink from the initial fully submerged depth to the bottom of the container is H = 0.1 m. The initial temperature of the ball is T0 = 800 K, and the water temperature is T∞ = 300 K.Given correlations: For the convection heat transfer caused by flow past a sphere, the averaged Nusselt number is NuD = 2 + 0.6*(Re^(1/2))*(Pr^(1/3)) Questions:(1) Determine the averaged convection heat transfer coefficient h, and check if the LumpedCapacitance Method can be used to solve…

Chapter 6 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license