Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1.94EP

(a)

Interpretation Introduction

Interpretation:

The total number of hydrogen atoms present in a cycloalkane that contains four carbon atoms has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Cycloalkanes are a class of saturated hydrocarbons that contain a ring of carbon atoms with or without alkyl substituents on it.  The general molecular formula for cycloalkanes is CnH2n.  “n” is the number of carbon atoms present.  Some of the basic examples of cycloalkanes are cyclopropane (C3H6), cyclobutane (C4H8).

(a)

Expert Solution
Check Mark

Answer to Problem 1.94EP

The total number of hydrogen atoms present is 8.

Explanation of Solution

Cycloalkanes are saturated hydrocarbons that contain only single bonds between carbon atoms with a ring structure.  The general molecular formula for cycloalkane is CnH2n.  In the problem statement, the total number of carbon atoms present in the alkane is given as four.  This means that “n” is four.  This can be substituted in the general formula to obtain the total number of hydrogen atoms.

  CnH2nC4H(2*4)C4H8

The total number of hydrogen atoms that will be present in the given cycloalkane is found to be eight.

Conclusion

The total number of hydrogen atoms present in the cycloalkane containing four carbon atoms is eight.

(b)

Interpretation Introduction

Interpretation:

The total number of carbon atoms present in cycloalkane that contains six hydrogen atoms has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Cycloalkanes are a class of saturated hydrocarbons that contain a ring of carbon atoms with or without alkyl substituents on it.  The general molecular formula for cycloalkanes is CnH2n.  “n” is the number of carbon atoms present.  Some of the basic examples of cycloalkanes are cyclopropane (C3H6), cyclobutane (C4H8).

(b)

Expert Solution
Check Mark

Answer to Problem 1.94EP

The total number of carbon atoms present is 3.

Explanation of Solution

Cycloalkanes are saturated hydrocarbons that contain only single bonds between carbon atoms with a ring structure.  The general molecular formula for cycloalkane is CnH2n.  In the problem statement, the total number of hydrogen atoms present in the alkane is given as six.  This means that “2n” is six.  This can be substituted in the general formula to obtain the total number of hydrogen atoms.

  CnH2n2n = 6n = 3

The total number of carbon atoms that will be present in the given cycloalkane is found to be three.

Conclusion

The total number of carbon atoms present in the alkane containing six hydrogen atoms is three.

(c)

Interpretation Introduction

Interpretation:

The total number of hydrogen atoms present in cycloalkane when the total atoms present in it was 18 has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Cycloalkanes are a class of saturated hydrocarbons that contain a ring of carbon atoms with or without alkyl substituents on it.  The general molecular formula for cycloalkanes is CnH2n.  “n” is the number of carbon atoms present.  Some of the basic examples of cycloalkanes are cyclopropane (C3H6), cyclobutane (C4H8).

(c)

Expert Solution
Check Mark

Answer to Problem 1.94EP

The total number of hydrogen atoms present is 12.

Explanation of Solution

Cycloalkanes are saturated hydrocarbons that contain only single bonds between carbon atoms with no ring structure.  The general molecular formula for cycloalkane is CnH2n.  In the problem statement, the total number of atoms present in the alkane is given as 18.  This means that “n+2n” is 18.  This can be substituted in the general formula to obtain the total number of hydrogen atoms present in the given molecule.

  CnH2nn+ 2n = 183n = 18n = 18/3 = 62n = 12

The total number of hydrogen atoms that will be present in the given cycloalkane is found to be twelve.

Conclusion

The total number of hydrogen atoms present in the cycloalkane containing a total of 18 atoms is twelve.

(d)

Interpretation Introduction

Interpretation:

The total number of covalent bonds present in the cycloalkane that contains eight hydrogen atoms has to be identified.

Concept Introduction:

Organic compounds are the important basis of life.  They include gasoline, coal, dyes, and clothing fibers etc.  The compounds that are obtained from living organisms are termed as organic compounds and those obtained from the earth are known as inorganic compounds.  Organic compounds are found in earth also apart from living organisms.  All the organic compounds contain the element carbon.  Urea was synthesized in the laboratory which is an organic compound.

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Cycloalkanes are a class of saturated hydrocarbons that contain a ring of carbon atoms with or without alkyl substituents on it.  The general molecular formula for cycloalkanes is CnH2n.  “n” is the number of carbon atoms present.  Some of the basic examples of cycloalkanes are cyclopropane (C3H6), cyclobutane (C4H8).

(d)

Expert Solution
Check Mark

Answer to Problem 1.94EP

The total number of covalent bonds present is 12.

Explanation of Solution

Cycloalkanes are saturated hydrocarbons that contain only single bonds between carbon atoms with ring structure.  The general molecular formula for cycloalkane is CnH2n.  In the problem statement, the total number of hydrogen atoms present in the cycloalkane is given as eight.  This means that “2n” is eight.  This can be substituted in the general formula to obtain the total number of hydrogen atoms.

  CnH2n2n = 8n = 4

From the formula obtained for the cycloalkane, it is clear that there are eight hydrogen atoms and four carbon atoms.  Each hydrogen atom will be bonded to carbon atom through a covalent bond.  Each carbon atom will be bonded to other carbon atom through a covalent bond in a cylic fashion.  Hence, a total of 12 covalent bonds will be present in the cycloalkane that contains eight hydrogen atoms.

Conclusion

The total number of covalent bonds present in the cycloalkane that contains eight hydrogen atoms is 12.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When the molecular formulas for cyclic and noncyclic alkanes with the same number of carbon atoms are compared, it is always found that the cycloalkane has a) two more hydrogen atoms. b) the same number of hydrogen atoms. c) two less hydrogen atoms. d) four less hydrogen atoms.
Using the general formula for alkanes, how do you solve this and please explain thank you a. How many hydrogen atoms are present when 8 carbon atoms are present in an alkane structure? b. How many carbon atoms are present when 10 hydrogen atoms are present in an alkane structure? c. How many carbon atoms are present when 41 total atoms are present in an alkane structure?
Using the general formula for alkanes, how do you solve this and please explain thank you a. How many carbon atoms present when 14 hydrogen atoms are present in an alkane structure? b. How many hydrogen atoms present when 6 carbon atoms are present in an alkane structure

Chapter 1 Solutions

Organic And Biological Chemistry

Ch. 1.5 - Prob. 2QQCh. 1.5 - Prob. 3QQCh. 1.6 - Prob. 1QQCh. 1.6 - Prob. 2QQCh. 1.6 - Prob. 3QQCh. 1.6 - Prob. 4QQCh. 1.7 - Prob. 1QQCh. 1.7 - Prob. 2QQCh. 1.8 - Prob. 1QQCh. 1.8 - Prob. 2QQCh. 1.8 - Prob. 3QQCh. 1.8 - Prob. 4QQCh. 1.8 - Prob. 5QQCh. 1.8 - Prob. 6QQCh. 1.8 - Prob. 7QQCh. 1.9 - Prob. 1QQCh. 1.9 - Prob. 2QQCh. 1.10 - Prob. 1QQCh. 1.10 - Prob. 2QQCh. 1.11 - Prob. 1QQCh. 1.11 - Prob. 2QQCh. 1.11 - Prob. 3QQCh. 1.12 - Prob. 1QQCh. 1.12 - Prob. 2QQCh. 1.12 - Prob. 3QQCh. 1.13 - Prob. 1QQCh. 1.13 - Prob. 2QQCh. 1.13 - Prob. 3QQCh. 1.14 - Prob. 1QQCh. 1.14 - Prob. 2QQCh. 1.14 - Prob. 3QQCh. 1.15 - Prob. 1QQCh. 1.15 - Prob. 2QQCh. 1.16 - Prob. 1QQCh. 1.16 - Prob. 2QQCh. 1.16 - Prob. 3QQCh. 1.17 - Prob. 1QQCh. 1.17 - Prob. 2QQCh. 1.17 - Prob. 3QQCh. 1.17 - Prob. 4QQCh. 1.18 - Prob. 1QQCh. 1.18 - Prob. 2QQCh. 1.18 - Prob. 3QQCh. 1.18 - Prob. 4QQCh. 1 - Prob. 1.1EPCh. 1 - Prob. 1.2EPCh. 1 - Prob. 1.3EPCh. 1 - Prob. 1.4EPCh. 1 - Indicate whether each of the following situations...Ch. 1 - Indicate whether each of the following situations...Ch. 1 - Prob. 1.7EPCh. 1 - Prob. 1.8EPCh. 1 - What is the difference between a saturated...Ch. 1 - What structural feature is present in an...Ch. 1 - Prob. 1.11EPCh. 1 - Prob. 1.12EPCh. 1 - Prob. 1.13EPCh. 1 - Prob. 1.14EPCh. 1 - Prob. 1.15EPCh. 1 - Prob. 1.16EPCh. 1 - Convert the expanded structural formulas in...Ch. 1 - Prob. 1.18EPCh. 1 - Prob. 1.19EPCh. 1 - Prob. 1.20EPCh. 1 - Prob. 1.21EPCh. 1 - Prob. 1.22EPCh. 1 - Prob. 1.23EPCh. 1 - Prob. 1.24EPCh. 1 - Prob. 1.25EPCh. 1 - Prob. 1.26EPCh. 1 - Indicate whether each of the following would be...Ch. 1 - Indicate whether each of the following would be...Ch. 1 - Prob. 1.29EPCh. 1 - Explain why two different straight-chain alkanes...Ch. 1 - With the help of Table 12-1, indicate how many...Ch. 1 - Prob. 1.32EPCh. 1 - How many of the numerous eight-carbon alkane...Ch. 1 - How many of the numerous seven-carbon alkane...Ch. 1 - For each of the following pairs of structures,...Ch. 1 - For each of the following pairs of structures,...Ch. 1 - Convert each of the following linear condensed...Ch. 1 - Prob. 1.38EPCh. 1 - Prob. 1.39EPCh. 1 - Prob. 1.40EPCh. 1 - Prob. 1.41EPCh. 1 - Prob. 1.42EPCh. 1 - Prob. 1.43EPCh. 1 - Prob. 1.44EPCh. 1 - Prob. 1.45EPCh. 1 - Prob. 1.46EPCh. 1 - Prob. 1.47EPCh. 1 - Prob. 1.48EPCh. 1 - Prob. 1.49EPCh. 1 - Prob. 1.50EPCh. 1 - Prob. 1.51EPCh. 1 - Prob. 1.52EPCh. 1 - Draw a condensed structural formula for each of...Ch. 1 - Draw a condensed structural formula for each of...Ch. 1 - Prob. 1.55EPCh. 1 - For each of the alkanes in Problem 12-54,...Ch. 1 - Explain why the name given for each of the...Ch. 1 - Prob. 1.58EPCh. 1 - Indicate whether or not the two alkanes in each of...Ch. 1 - Prob. 1.60EPCh. 1 - How many of the 18 C8 alkane constitutional...Ch. 1 - How many of the nine C7 alkane constitutional...Ch. 1 - Prob. 1.63EPCh. 1 - Prob. 1.64EPCh. 1 - Prob. 1.65EPCh. 1 - Prob. 1.66EPCh. 1 - Do the line-angle structural formulas in each of...Ch. 1 - Do the line-angle structural formulas in each of...Ch. 1 - Convert each of the condensed structural formulas...Ch. 1 - Convert each of the condensed structural formulas...Ch. 1 - Assign an IUPAC name to each of the compounds in...Ch. 1 - Prob. 1.72EPCh. 1 - Prob. 1.73EPCh. 1 - Prob. 1.74EPCh. 1 - For each of the alkane structures in Problem...Ch. 1 - For each of the alkane structures in Problem...Ch. 1 - Prob. 1.77EPCh. 1 - Prob. 1.78EPCh. 1 - Prob. 1.79EPCh. 1 - Prob. 1.80EPCh. 1 - Prob. 1.81EPCh. 1 - Prob. 1.82EPCh. 1 - Draw condensed structural formulas for the...Ch. 1 - Draw condensed structural formulas for the...Ch. 1 - To which carbon atoms in a hexane molecule can...Ch. 1 - Prob. 1.86EPCh. 1 - Prob. 1.87EPCh. 1 - Prob. 1.88EPCh. 1 - Give an acceptable alternate name for each of the...Ch. 1 - Prob. 1.90EPCh. 1 - Prob. 1.91EPCh. 1 - Prob. 1.92EPCh. 1 - Prob. 1.93EPCh. 1 - Prob. 1.94EPCh. 1 - What is the molecular formula for each of the...Ch. 1 - Prob. 1.96EPCh. 1 - Prob. 1.97EPCh. 1 - Prob. 1.98EPCh. 1 - Prob. 1.99EPCh. 1 - How many secondary carbon atoms are present in...Ch. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Prob. 1.103EPCh. 1 - Prob. 1.104EPCh. 1 - Prob. 1.105EPCh. 1 - Prob. 1.106EPCh. 1 - What is the molecular formula for each of the...Ch. 1 - Prob. 1.108EPCh. 1 - Prob. 1.109EPCh. 1 - Prob. 1.110EPCh. 1 - Prob. 1.111EPCh. 1 - Prob. 1.112EPCh. 1 - Determine whether cistrans isomerism is possible...Ch. 1 - Prob. 1.114EPCh. 1 - Prob. 1.115EPCh. 1 - Prob. 1.116EPCh. 1 - Prob. 1.117EPCh. 1 - Indicate whether the members of each of the...Ch. 1 - Prob. 1.119EPCh. 1 - Prob. 1.120EPCh. 1 - Prob. 1.121EPCh. 1 - Prob. 1.122EPCh. 1 - Prob. 1.123EPCh. 1 - Which member in each of the following pairs of...Ch. 1 - Prob. 1.125EPCh. 1 - Prob. 1.126EPCh. 1 - Answer the following questions about the...Ch. 1 - Prob. 1.128EPCh. 1 - Prob. 1.129EPCh. 1 - Prob. 1.130EPCh. 1 - Write molecular formulas for all the possible...Ch. 1 - Write molecular formulas for all the possible...Ch. 1 - Prob. 1.133EPCh. 1 - Prob. 1.134EPCh. 1 - Prob. 1.135EPCh. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Prob. 1.137EPCh. 1 - Prob. 1.138EPCh. 1 - Prob. 1.139EPCh. 1 - Prob. 1.140EPCh. 1 - Prob. 1.141EPCh. 1 - Prob. 1.142EPCh. 1 - Prob. 1.143EPCh. 1 - Prob. 1.144EPCh. 1 - Prob. 1.145EPCh. 1 - Prob. 1.146EPCh. 1 - Give the IUPAC names for the eight isomeric...Ch. 1 - Prob. 1.148EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Nomenclature: Crash Course Chemistry #44; Author: CrashCourse;https://www.youtube.com/watch?v=U7wavimfNFE;License: Standard YouTube License, CC-BY