BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079

Solutions

Chapter
Section
BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079
Textbook Problem

Convert each of the following linear condensed structural formulas into “regular” condensed structural formulas.

  1. a. CH3—CH2—CH—(CH3)—CH2—CH3
  2. b. (CH3)2—CH—CH2—CH—(CH3)2
  3. c. CH3—CH—(CH3)—CH3
  4. d. CH3—CH2—CH—(CH2—CH3)—CH2—CH3

(a)

Interpretation Introduction

Interpretation:

The given linear condensed structural formula has to be converted into “regular” condensed structural formula.

Concept Introduction:

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • Expanded structural formula
  • Condensed structural formula
  • Skeletal structural formula
  • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 1, Problem 1.37EP , additional homework tip  1

In condensed structural formula for alkanes, the repeating CH2 group can be represented using parentheses and subscript.  Subscript here represents the number of times the CH2 group is repeated in a continuous chain.

The condensed structural formula for branched chain alkane can be entered using parentheses to give a linear (straight-line) condensed structural formula.  Groups in parentheses are understood that it is attached to the carbon atom that precedes the group.

Explanation

The given linear condensed structural formula is,

  CH3CH2CH(CH3)CH2CH3

(b)

Interpretation Introduction

Interpretation:

The given linear condensed structural formula has to be converted into “regular” condensed structural formula.

Concept Introduction:

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • Expanded structural formula
  • Condensed structural formula
  • Skeletal structural formula
  • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 1, Problem 1.37EP , additional homework tip  2

In condensed structural formula for alkanes, the repeating CH2 group can be represented using parentheses and subscript.  Subscript here represents the number of times the CH2 group is repeated in a continuous chain.

The condensed structural formula for branched chain alkane can be entered using parentheses to give a linear (straight-line) condensed structural formula.  Groups in parentheses are understood that it is attached to the carbon atom that precedes the group.

(c)

Interpretation Introduction

Interpretation:

The given linear condensed structural formula has to be converted into “regular” condensed structural formula.

Concept Introduction:

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • Expanded structural formula
  • Condensed structural formula
  • Skeletal structural formula
  • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 1, Problem 1.37EP , additional homework tip  3

In condensed structural formula for alkanes, the repeating CH2 group can be represented using parentheses and subscript.  Subscript here represents the number of times the CH2 group is repeated in a continuous chain.

The condensed structural formula for branched chain alkane can be entered using parentheses to give a linear (straight-line) condensed structural formula.  Groups in parentheses are understood that it is attached to the carbon atom that precedes the group.

(d)

Interpretation Introduction

Interpretation:

The given linear condensed structural formula has to be converted into “regular” condensed structural formula.

Concept Introduction:

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • Expanded structural formula
  • Condensed structural formula
  • Skeletal structural formula
  • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 1, Problem 1.37EP , additional homework tip  4

In condensed structural formula for alkanes, the repeating CH2 group can be represented using parentheses and subscript.  Subscript here represents the number of times the CH2 group is repeated in a continuous chain.

The condensed structural formula for branched chain alkane can be entered using parentheses to give a linear (straight-line) condensed structural formula.  Groups in parentheses are understood that it is attached to the carbon atom that precedes the group.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-1.5 P-2QQSect-1.5 P-3QQSect-1.6 P-1QQSect-1.6 P-2QQSect-1.6 P-3QQSect-1.6 P-4QQSect-1.7 P-1QQSect-1.7 P-2QQSect-1.8 P-1QQSect-1.8 P-2QQSect-1.8 P-3QQSect-1.8 P-4QQSect-1.8 P-5QQSect-1.8 P-6QQSect-1.8 P-7QQSect-1.9 P-1QQSect-1.9 P-2QQSect-1.10 P-1QQSect-1.10 P-2QQSect-1.11 P-1QQSect-1.11 P-2QQSect-1.11 P-3QQSect-1.12 P-1QQSect-1.12 P-2QQSect-1.12 P-3QQSect-1.13 P-1QQSect-1.13 P-2QQSect-1.13 P-3QQSect-1.14 P-1QQSect-1.14 P-2QQSect-1.14 P-3QQSect-1.15 P-1QQSect-1.15 P-2QQSect-1.16 P-1QQSect-1.16 P-2QQSect-1.16 P-3QQSect-1.17 P-1QQSect-1.17 P-2QQSect-1.17 P-3QQSect-1.17 P-4QQSect-1.18 P-1QQSect-1.18 P-2QQSect-1.18 P-3QQSect-1.18 P-4QQCh-1 P-1.1EPCh-1 P-1.2EPCh-1 P-1.3EPCh-1 P-1.4EPCh-1 P-1.5EPCh-1 P-1.6EPCh-1 P-1.7EPCh-1 P-1.8EPCh-1 P-1.9EPCh-1 P-1.10EPCh-1 P-1.11EPCh-1 P-1.12EPCh-1 P-1.13EPCh-1 P-1.14EPCh-1 P-1.15EPCh-1 P-1.16EPCh-1 P-1.17EPCh-1 P-1.18EPCh-1 P-1.19EPCh-1 P-1.20EPCh-1 P-1.21EPCh-1 P-1.22EPCh-1 P-1.23EPCh-1 P-1.24EPCh-1 P-1.25EPCh-1 P-1.26EPCh-1 P-1.27EPCh-1 P-1.28EPCh-1 P-1.29EPCh-1 P-1.30EPCh-1 P-1.31EPCh-1 P-1.32EPCh-1 P-1.33EPCh-1 P-1.34EPCh-1 P-1.35EPCh-1 P-1.36EPCh-1 P-1.37EPCh-1 P-1.38EPCh-1 P-1.39EPCh-1 P-1.40EPCh-1 P-1.41EPCh-1 P-1.42EPCh-1 P-1.43EPCh-1 P-1.44EPCh-1 P-1.45EPCh-1 P-1.46EPCh-1 P-1.47EPCh-1 P-1.48EPCh-1 P-1.49EPCh-1 P-1.50EPCh-1 P-1.51EPCh-1 P-1.52EPCh-1 P-1.53EPCh-1 P-1.54EPCh-1 P-1.55EPCh-1 P-1.56EPCh-1 P-1.57EPCh-1 P-1.58EPCh-1 P-1.59EPCh-1 P-1.60EPCh-1 P-1.61EPCh-1 P-1.62EPCh-1 P-1.63EPCh-1 P-1.64EPCh-1 P-1.65EPCh-1 P-1.66EPCh-1 P-1.67EPCh-1 P-1.68EPCh-1 P-1.69EPCh-1 P-1.70EPCh-1 P-1.71EPCh-1 P-1.72EPCh-1 P-1.73EPCh-1 P-1.74EPCh-1 P-1.75EPCh-1 P-1.76EPCh-1 P-1.77EPCh-1 P-1.78EPCh-1 P-1.79EPCh-1 P-1.80EPCh-1 P-1.81EPCh-1 P-1.82EPCh-1 P-1.83EPCh-1 P-1.84EPCh-1 P-1.85EPCh-1 P-1.86EPCh-1 P-1.87EPCh-1 P-1.88EPCh-1 P-1.89EPCh-1 P-1.90EPCh-1 P-1.91EPCh-1 P-1.92EPCh-1 P-1.93EPCh-1 P-1.94EPCh-1 P-1.95EPCh-1 P-1.96EPCh-1 P-1.97EPCh-1 P-1.98EPCh-1 P-1.99EPCh-1 P-1.100EPCh-1 P-1.101EPCh-1 P-1.102EPCh-1 P-1.103EPCh-1 P-1.104EPCh-1 P-1.105EPCh-1 P-1.106EPCh-1 P-1.107EPCh-1 P-1.108EPCh-1 P-1.109EPCh-1 P-1.110EPCh-1 P-1.111EPCh-1 P-1.112EPCh-1 P-1.113EPCh-1 P-1.114EPCh-1 P-1.115EPCh-1 P-1.116EPCh-1 P-1.117EPCh-1 P-1.118EPCh-1 P-1.119EPCh-1 P-1.120EPCh-1 P-1.121EPCh-1 P-1.122EPCh-1 P-1.123EPCh-1 P-1.124EPCh-1 P-1.125EPCh-1 P-1.126EPCh-1 P-1.127EPCh-1 P-1.128EPCh-1 P-1.129EPCh-1 P-1.130EPCh-1 P-1.131EPCh-1 P-1.132EPCh-1 P-1.133EPCh-1 P-1.134EPCh-1 P-1.135EPCh-1 P-1.136EPCh-1 P-1.137EPCh-1 P-1.138EPCh-1 P-1.139EPCh-1 P-1.140EPCh-1 P-1.141EPCh-1 P-1.142EPCh-1 P-1.143EPCh-1 P-1.144EPCh-1 P-1.145EPCh-1 P-1.146EPCh-1 P-1.147EPCh-1 P-1.148EP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Match the term listed in Column A with its definition from Column B

Nutrition Through the Life Cycle (MindTap Course List)

Does the cell cycle refer to mitosis as well as meiosis?

Human Heredity: Principles and Issues (MindTap Course List)

The nervous system sends messages to the glands, telling them what to do. T F

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)