BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079

Solutions

Chapter
Section
BuyFindarrow_forward

Organic And Biological Chemistry

7th Edition
STOKER + 1 other
ISBN: 9781305081079
Textbook Problem

Which member in each of the following pairs of compounds has the higher boiling point?

  1. a. Hexane and octane
  2. b. Cyclobutane and cyclopentane
  3. c. Pentane and 1-methylbutane
  4. d. Pentane and cyclopentane

(a)

Interpretation Introduction

Interpretation:

The member that has higher boiling point in the given pair has to be identified.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons.  They both occur naturally.

Alkanes and cycloalkanes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkanes and cycloalkanes do not get solubilized in water.  In other words, alkanes and cycloalkanes are insoluble in water.

Regarding density, alkanes and cycloalkanes have density lower than water.  When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility.  Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.

Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size.  When considering the continuous‑chain alkanes, the boiling point of alkanes increases about 30°C for every carbon atom that is added to the chain.  The continuous alkanes which contain one to four carbon atoms are gases at room temperature.  The continuous chain alkanes that contain five to seventeen carbon atoms are liquids at room temperature.  The continuous chain alkanes that contain more than eighteen carbon atoms are solids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkanes.  In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.

Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropane and cyclobutane are gases at room temperature.  Cyclopentane to cyclooctane are liquids at room temperature.

Explanation

When considering the continuous‑chain alkanes, the boiling point of alkanes increases about 30°C for every carbon atom that is added to the chain.  Given compounds are hexane and octane

(b)

Interpretation Introduction

Interpretation:

The member that has higher boiling point in the given pair has to be identified.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons.  They both occur naturally.

Alkanes and cycloalkanes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkanes and cycloalkanes do not get solubilized in water.  In other words, alkanes and cycloalkanes are insoluble in water.

Regarding density, alkanes and cycloalkanes have density lower than water.  When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility.  Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.

Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size.  When considering the continuous‑chain alkanes, the boiling point of alkanes increases about 30°C for every carbon atom that is added to the chain.  The continuous alkanes which contain one to four carbon atoms are gases at room temperature.  The continuous chain alkanes that contain five to seventeen carbon atoms are liquids at room temperature.  The continuous chain alkanes that contain more than eighteen carbon atoms are solids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkanes.  In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.

Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropane and cyclobutane are gases at room temperature.  Cyclopentane to cyclooctane are liquids at room temperature.

(c)

Interpretation Introduction

Interpretation:

The member that has higher boiling point in the given pair has to be identified.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons.  They both occur naturally.

Alkanes and cycloalkanes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkanes and cycloalkanes do not get solubilized in water.  In other words, alkanes and cycloalkanes are insoluble in water.

Regarding density, alkanes and cycloalkanes have density lower than water.  When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility.  Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.

Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size.  When considering the continuous‑chain alkanes, the boiling point of alkanes increases about 30°C for every carbon atom that is added to the chain.  The continuous alkanes which contain one to four carbon atoms are gases at room temperature.  The continuous chain alkanes that contain five to seventeen carbon atoms are liquids at room temperature.  The continuous chain alkanes that contain more than eighteen carbon atoms are solids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkanes.  In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.

Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropane and cyclobutane are gases at room temperature.  Cyclopentane to cyclooctane are liquids at room temperature.

(d)

Interpretation Introduction

Interpretation:

The member that has higher boiling point in the given pair has to be identified.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons.  They both occur naturally.

Alkanes and cycloalkanes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkanes and cycloalkanes do not get solubilized in water.  In other words, alkanes and cycloalkanes are insoluble in water.

Regarding density, alkanes and cycloalkanes have density lower than water.  When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility.  Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.

Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size.  When considering the continuous‑chain alkanes, the boiling point of alkanes increases about 30°C for every carbon atom that is added to the chain.  The continuous alkanes which contain one to four carbon atoms are gases at room temperature.  The continuous chain alkanes that contain five to seventeen carbon atoms are liquids at room temperature.  The continuous chain alkanes that contain more than eighteen carbon atoms are solids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkanes.  In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.

Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropane and cyclobutane are gases at room temperature.  Cyclopentane to cyclooctane are liquids at room temperature.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-1.5 P-2QQSect-1.5 P-3QQSect-1.6 P-1QQSect-1.6 P-2QQSect-1.6 P-3QQSect-1.6 P-4QQSect-1.7 P-1QQSect-1.7 P-2QQSect-1.8 P-1QQSect-1.8 P-2QQSect-1.8 P-3QQSect-1.8 P-4QQSect-1.8 P-5QQSect-1.8 P-6QQSect-1.8 P-7QQSect-1.9 P-1QQSect-1.9 P-2QQSect-1.10 P-1QQSect-1.10 P-2QQSect-1.11 P-1QQSect-1.11 P-2QQSect-1.11 P-3QQSect-1.12 P-1QQSect-1.12 P-2QQSect-1.12 P-3QQSect-1.13 P-1QQSect-1.13 P-2QQSect-1.13 P-3QQSect-1.14 P-1QQSect-1.14 P-2QQSect-1.14 P-3QQSect-1.15 P-1QQSect-1.15 P-2QQSect-1.16 P-1QQSect-1.16 P-2QQSect-1.16 P-3QQSect-1.17 P-1QQSect-1.17 P-2QQSect-1.17 P-3QQSect-1.17 P-4QQSect-1.18 P-1QQSect-1.18 P-2QQSect-1.18 P-3QQSect-1.18 P-4QQCh-1 P-1.1EPCh-1 P-1.2EPCh-1 P-1.3EPCh-1 P-1.4EPCh-1 P-1.5EPCh-1 P-1.6EPCh-1 P-1.7EPCh-1 P-1.8EPCh-1 P-1.9EPCh-1 P-1.10EPCh-1 P-1.11EPCh-1 P-1.12EPCh-1 P-1.13EPCh-1 P-1.14EPCh-1 P-1.15EPCh-1 P-1.16EPCh-1 P-1.17EPCh-1 P-1.18EPCh-1 P-1.19EPCh-1 P-1.20EPCh-1 P-1.21EPCh-1 P-1.22EPCh-1 P-1.23EPCh-1 P-1.24EPCh-1 P-1.25EPCh-1 P-1.26EPCh-1 P-1.27EPCh-1 P-1.28EPCh-1 P-1.29EPCh-1 P-1.30EPCh-1 P-1.31EPCh-1 P-1.32EPCh-1 P-1.33EPCh-1 P-1.34EPCh-1 P-1.35EPCh-1 P-1.36EPCh-1 P-1.37EPCh-1 P-1.38EPCh-1 P-1.39EPCh-1 P-1.40EPCh-1 P-1.41EPCh-1 P-1.42EPCh-1 P-1.43EPCh-1 P-1.44EPCh-1 P-1.45EPCh-1 P-1.46EPCh-1 P-1.47EPCh-1 P-1.48EPCh-1 P-1.49EPCh-1 P-1.50EPCh-1 P-1.51EPCh-1 P-1.52EPCh-1 P-1.53EPCh-1 P-1.54EPCh-1 P-1.55EPCh-1 P-1.56EPCh-1 P-1.57EPCh-1 P-1.58EPCh-1 P-1.59EPCh-1 P-1.60EPCh-1 P-1.61EPCh-1 P-1.62EPCh-1 P-1.63EPCh-1 P-1.64EPCh-1 P-1.65EPCh-1 P-1.66EPCh-1 P-1.67EPCh-1 P-1.68EPCh-1 P-1.69EPCh-1 P-1.70EPCh-1 P-1.71EPCh-1 P-1.72EPCh-1 P-1.73EPCh-1 P-1.74EPCh-1 P-1.75EPCh-1 P-1.76EPCh-1 P-1.77EPCh-1 P-1.78EPCh-1 P-1.79EPCh-1 P-1.80EPCh-1 P-1.81EPCh-1 P-1.82EPCh-1 P-1.83EPCh-1 P-1.84EPCh-1 P-1.85EPCh-1 P-1.86EPCh-1 P-1.87EPCh-1 P-1.88EPCh-1 P-1.89EPCh-1 P-1.90EPCh-1 P-1.91EPCh-1 P-1.92EPCh-1 P-1.93EPCh-1 P-1.94EPCh-1 P-1.95EPCh-1 P-1.96EPCh-1 P-1.97EPCh-1 P-1.98EPCh-1 P-1.99EPCh-1 P-1.100EPCh-1 P-1.101EPCh-1 P-1.102EPCh-1 P-1.103EPCh-1 P-1.104EPCh-1 P-1.105EPCh-1 P-1.106EPCh-1 P-1.107EPCh-1 P-1.108EPCh-1 P-1.109EPCh-1 P-1.110EPCh-1 P-1.111EPCh-1 P-1.112EPCh-1 P-1.113EPCh-1 P-1.114EPCh-1 P-1.115EPCh-1 P-1.116EPCh-1 P-1.117EPCh-1 P-1.118EPCh-1 P-1.119EPCh-1 P-1.120EPCh-1 P-1.121EPCh-1 P-1.122EPCh-1 P-1.123EPCh-1 P-1.124EPCh-1 P-1.125EPCh-1 P-1.126EPCh-1 P-1.127EPCh-1 P-1.128EPCh-1 P-1.129EPCh-1 P-1.130EPCh-1 P-1.131EPCh-1 P-1.132EPCh-1 P-1.133EPCh-1 P-1.134EPCh-1 P-1.135EPCh-1 P-1.136EPCh-1 P-1.137EPCh-1 P-1.138EPCh-1 P-1.139EPCh-1 P-1.140EPCh-1 P-1.141EPCh-1 P-1.142EPCh-1 P-1.143EPCh-1 P-1.144EPCh-1 P-1.145EPCh-1 P-1.146EPCh-1 P-1.147EPCh-1 P-1.148EP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

How can you be sure that giant stars really are Larger than main- sequence stars?

Horizons: Exploring the Universe (MindTap Course List)

Which of the following can contribute to choking in children? peanut butter eaten by the spoonful hot dogs and ...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)