FindFindarrow_forward

CHEMISTRY: ATOMS FIRST VOL 1 W/CON...

14th Edition
Burdge
ISBN: 9781259327933

Solutions

Chapter
Section
FindFindarrow_forward

CHEMISTRY: ATOMS FIRST VOL 1 W/CON...

14th Edition
Burdge
ISBN: 9781259327933
Interpretation Introduction

Interpretation: From the given details of the strontium -90, it should be calculated the years it will take for 1.00 g of the isotope to be reduced to 0.200g by decay.

Concept Introduction:

  • Unstable nuclei emit radiation spontaneously to become stable nuclei by losing energy. This process of emission of radiation by unstable nuclei is known as radioactive decay.
  • These emitted radiations may be alpha radiations( α ), beta radiations( β ) or gamma radiations( γ )
  • These unstable nuclei are the nuclei with more than 83 protons and which do not lie within the belt of stability.
  • Radioactive decay are in the first order kinetics. Rate of radioactive decay at a time t is,

    Rate of decay at a time 't' = k Nk-Firstorderrateconstant and its unit is t1N-numberofradioactivenucleipresentattime't

    Suppose the number of radioactive nuclei at time zero is N0 and at a time t is Nt ,

    lnNtN0=-kt

  • Half-life of radioactive decay is the time required for a radioactive sample to decay to one half of the atomic nucleus.

    Half-life of the radiation,  t1/2=0.693k

    Half-life and rate constant for radioactive isotopes vary greatly from nucleus to nucleus.

To determine: The value of k

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Answers to Your Study Problems

Solve them all with bartleby. Boost your grades with guidance from subject experts covering thousands of textbooks. All for just $9.99/month

Get As ASAP