# To express the integral as a limit of Riemann sum. ### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805 ### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

#### Solutions

Chapter 5.2, Problem 28E
To determine

## To express the integral as a limit of Riemann sum.

Expert Solution

The value of Riemann sum is limxi=1n[(1+9ni)4ln(1+9ni)]9n .

### Explanation of Solution

Given information:

The equation is

110(x4lnx)dx

The given expression can be obtained as

110(x4lnx)dx

The width of the subintervals is

Δx=banΔx=101n          [since, b=10,a=1]Δx=9n

And

xi=a+iΔxxi=1+9ni                 [since, a=1,Δx=9n]

Therefore,

110(x4lnx)dx=limxi=1nf(xi)Δx

Put the values of Δx=9n,xi=1+9ni on the above equation

110(x4lnx)dx=limxi=1nf(xi)Δx                          =limxi=1n[(1+9ni)4ln(1+9ni)]9n

Hence,

The value of Riemann sum is limxi=1n[(1+9ni)4ln(1+9ni)]9n .

### Have a homework question?

Subscribe to bartleby learn! Ask subject matter experts 30 homework questions each month. Plus, you’ll have access to millions of step-by-step textbook answers!