EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 20, Problem 24P

As compared to the models from Probs. 20.22 and 20.23, a somewhat more sophisticated model that accounts for the effect of both temperature and chloride on dissolved oxygen saturation can be hypothesized as being of the form,

o s = a 0 + f 3 ( T ) + f 1 ( c )

That is, a constant plus a third-order polynomial in temperature and a linear relationship in chloride are assumed to yield superior results. Use the general linear least-squares approach to fit this model to the data in Table P20.21. Use the resulting equation to estimate the dissolved oxygen concentration for a chloride concentration of 10 g/L at T = 20 ° C .

Blurred answer
Students have asked these similar questions
Project 1 100 150 200 250 20. 300 350 400 450 500 550 600 650 QIPINHFC-134a 700 200. 000124 -0.0014 0.0016 10. Pressure-Enthalpy 0,0011 P00018 0.0020 8. 0.0013 0.0030 Diagram 100. 80. 6. volume - 0.0040 mikg (SI Units) 0.0060 60. 0.0080 0.010 40. 2. 0.015 0 020 20. 1. 0 030 0.8 0.040 0.6 10. 0.060 8. 0.4 0.080 temper 0.10 4. a 02 0.15 0.20 2. 0.1 0.08 030 0.40 0.06 1. 0.8 0.60 0.04 0.6 O.80 1.0 0.4 0.02 15 20 0.2 0.01 100 150 200 250 300 350 400 450 0.1 700 500 550 600 650 Enthalpy (kJ/kg) Refrigerant HFC-134a as the working fluid Ideal cycle operation condition is assumed Cycle is operated at high pressure line of 0.8 MPa Cycle is operated at low temperature line of –10° C - Flow rate is 0.1 kg/sec The head of the department in the company that you are working in asked you to make use of pressure - enthalpy chart provided for HFC-134a refrigerant a. Estimate the reversible COP values, if the low and high medium temperature are as for the evaporator and condenser. Pressure (bar)…
The following table lists temperatures and specific volumes of water vapor at two pressures: p = 1.5 MPa v(m³/kg) p = 1.0 MPa T ("C) v(m³/kg) T ("C) 200 0.2060 200 0.1325 240 280 0.2275 0.2480 240 280 0.1483 0.1627 Data encountered in solving problems often do not fall exactly on the grid of values provided by property tables, and linear interpolation between adjacent table entries becomes necessary. Using the data provided here, estimate i. the specific volume at T= 240 °Č, p = 1.25 MPa, in m/kg ii. the temperature at p = 1.5 MPa, v = 0.1555 m/kg, in °C ii. the specific volume at T = 220 °C, p = 1.4 MPa, in m'/kg
Project 1 100 20. 150 200 250 300 350 400 450 500 550 600 650 QUPINHFC-134a 700 200. 00012 00013 0.0014 r0.0016 J00018 10. Pressure-Enthalpy 0.0020 8. 0.0030 100. 80. 6. Diagram volume 0.0040 mikg (SI Units) 0.0060 0 0080 0.010 4. 60. 40. 2. 0.015 0 020 20. 1. 0.8 0030 0.040 10. 8. 0.6 0.060 0.4 6. 0.080 010 0.2 0.15 020 2. 0.1 0.30 0.08 0.40 1. 0.8 0.06 060 0.04 0.6 O80 1.0 0.4 0.02 15 20 0.2 0.01 100 150 200 250 300 350 400 450 0.1 700 500 550 600 650 Enthalpy (kJ/kg) Refrigerant HFC-134a as the working fluid Ideal cycle operation condition is assumed - Cycle is operated at high pressure line of 0.8 MPa - Cycle is operated at low temperature line of – 10° C - Flow rate is 0.1 kg/sec The head of the department in the company that you are working in asked you to make use of pressure -enthalpy chart provided for HFC-134a refrigerant Task.1 1. Determine the Refrigeration effect (RE), heat of compression (HOC), and heat of rejection (HOR) and their corresponding rate/power values in kW.…

Chapter 20 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 20 - Prob. 11PCh. 20 - The molecular weight of a polymer can be...Ch. 20 - 20.13 On average, the surface area A of human...Ch. 20 - 20.14 Determine an equation to predict metabolism...Ch. 20 - 20.15 Human blood behaves as a Newtonian fluid...Ch. 20 - 20.16 Soft tissue follows an exponential...Ch. 20 - 20.17 The thickness of the retina changes during...Ch. 20 - 20.18 The data tabulated below were generated from...Ch. 20 - The shear stresses, in kilopascals (kPa), of nine...Ch. 20 - 20.20 A transportation engineering study was...Ch. 20 - The saturation concentration of dissolved oxygen...Ch. 20 - For the data in Table P20.21, use polynomial...Ch. 20 - 20.23 Use multiple linear regression to derive a...Ch. 20 - 20.24 As compared to the models from Probs. 20.22...Ch. 20 - 20.25 In water-resources engineering, the sizing...Ch. 20 - 20.26 The concentration of total phosphorus and...Ch. 20 - 20.27 The vertical stress under the corner of a...Ch. 20 - Three disease-carrying organisms decay...Ch. 20 - 20.29 The mast of a sailboat has a cross-sectional...Ch. 20 - 20.30 Enzymatic reactions are used extensively to...Ch. 20 - 20.31 Environmental engineers dealing with the...Ch. 20 - An environmental engineer has reported the data...Ch. 20 - The following model is frequently used in...Ch. 20 - 20.34 As a member of Engineers Without Borders,...Ch. 20 - 20.35 Perform the same computations as in Sec....Ch. 20 - 20.36 You measure the voltage drop V across a...Ch. 20 - Duplicate the computation for Prob. 20.36, but use...Ch. 20 - The current in a wire is measured with great...Ch. 20 - 20.39 The following data was taken from an...Ch. 20 - It is known that the voltage drop across an...Ch. 20 - Ohms law states that the voltage drop V across an...Ch. 20 - 20.42 Repeat Prob. 20.41 but determine the...Ch. 20 - 20.43 An experiment is performed to determine the...Ch. 20 - Bessel functions often arise in advanced...Ch. 20 - 20.45 The population of a small community on the...Ch. 20 - Based on Table 20.4, use linear and quadratic...Ch. 20 - 20.47 Reproduce Sec. 20.4, but develop an equation...Ch. 20 - 20.48 Dynamic viscosity of water is related to...Ch. 20 - 20.49 Hooke’s law, which holds when a spring is...Ch. 20 - 20.50 Repeat Prob. 20.49 but fit a power curve to...Ch. 20 - The distance required to stop an automobile...Ch. 20 - An experiment is performed to define the...Ch. 20 - The acceleration due to gravity at an altitude y...Ch. 20 - The creep rate is the time rate at which strain...Ch. 20 - 20.55 It is a common practice when examining a...Ch. 20 - The relationship between stress and the shear...Ch. 20 - The velocity u of air flowing past a flat surface...Ch. 20 - 20.58 Andrade’s equation has been proposed as a...Ch. 20 - Develop equations to fit the ideal specific heats...Ch. 20 - 20.60 Temperatures are measured at various points...Ch. 20 - 20.61 The data below were obtained from a creep...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY