BuyFindarrow_forward

Chemistry

9th Edition
Steven S. Zumdahl
ISBN: 9781133611097

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry

9th Edition
Steven S. Zumdahl
ISBN: 9781133611097
Textbook Problem

From data in Appendix 4, calculate ∆H°, ∆S°, and ∆G° for each of the following reactions at 25°C.

a. CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)

b. 6 CO 2 ( g ) + 6 H 2 O ( l ) C 6 H 12 O 6 ( s ) Glucose + 6 O 2 ( g )

c. P4O10(s) + 6H2O(l) → 4H3PO4(s)

d. HCl(g) + NH3(g) → NH4Cl(s)

(a)

Interpretation Introduction

Interpretation: The values of ΔS,ΔH and ΔG is to be calculated at 25°C in each case.

Concept introduction: The expression for ΔS is,

ΔS=npΔS(product)nfΔS(reactant)

The expression for ΔH is,

ΔH=npΔH(product)nfΔH(reactant)

The expression for ΔG is,

ΔG=npΔG(product)nfΔG(reactant)

Explanation

Explanation

The stated reaction is,

CH4(g)+2O2(g)CO2(g)+2H2O(g)

Refer to Appendix 4 .

The value of ΔS(J/Kmol) for the given reactant and product is,

Molecules ΔS(J/Kmol)
O2(g) 205
CH4(g) 186
CO2(g) 214
H2O(g) 189

The formula of ΔS is,

ΔS=npΔS(product)nfΔS(reactant)

Where,

  • ΔS is the standard entropy of reaction.
  • np is the number of moles of each product.
  • nr is the number of moles each reactant.
  • ΔS(product) is the standard entropy of product at a pressure of 1atm .
  • ΔS(reactant) is the standard entropy of reactant at a pressure of 1atm .

Substitute all values from the table in the above equation.

ΔS=npΔS(product)nfΔS(reactant)=[(214)+2(189){2(205)+(186)}]J/K=4J/K_

The value of ΔH(kJ/mol) for the given reactant and product is,

Molecules ΔH(kJ/mol)
O2(g) 0
CH4(g) 75
CO2(g) 393.5
H2O(g) 242

The formula of ΔH is,

ΔH=npΔH(product)nfΔH(reactant)

Where,

  • ΔH is the standard enthalpy of reaction

(b)

Interpretation Introduction

Interpretation: The values of ΔS,ΔH and ΔG is to be calculated at 25°C in each case.

Concept introduction: The expression for ΔS is,

ΔS=npΔS(product)nfΔS(reactant)

The expression for ΔH is,

ΔH=npΔH(product)nfΔH(reactant)

The expression for ΔG is,

ΔG=npΔG(product)nfΔG(reactant)

(c)

Interpretation Introduction

Interpretation: The values of ΔS,ΔH and ΔG is to be calculated at 25°C in each case.

Concept introduction: The expression for ΔS is,

ΔS=npΔS(product)nfΔS(reactant)

The expression for ΔH is,

ΔH=npΔH(product)nfΔH(reactant)

The expression for ΔG is,

ΔG=npΔG(product)nfΔG(reactant)

(d)

Interpretation Introduction

Interpretation: The values of ΔS,ΔH and ΔG is to be calculated at 25°C in each case.

Concept introduction: The expression for ΔS is,

ΔS=npΔS(product)nfΔS(reactant)

The expression for ΔH is,

ΔH=npΔH(product)nfΔH(reactant)

The expression for ΔG is,

ΔG=npΔG(product)nfΔG(reactant)

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 17 Solutions

Show all chapter solutions add

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Efforts in all of the following realms are necessary for weight change a. eating patterns, physical activity an...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

Distinguish between scalar and vector quantities.

An Introduction to Physical Science

What is the structure and function of a mitochondrion?

Biology: The Dynamic Science (MindTap Course List)

What is genomics?

Human Heredity: Principles and Issues (MindTap Course List)

In which of the following contexts ran Gausss law not be readily applied to find the electric field? (a) near a...

Physics for Scientists and Engineers, Technology Update (No access codes included)