Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 8.33P

The evaporator section of a heat pump is installed in a large tank of water, which is used as a heat source during the winter. As energy is extracted from the water, it begins to freeze, creating an ice/water bath at 0 ° C , which may be used for air conditioning during the summer. Consider summer cooling conditions for which air is passed through an array of copper tubes, each of inside diameter D = 50 m m , submerged in the bath.
(a) If air enters each tube at a mean temperature of T m , i = 24 ° C and a flow rate of m ˙ = 0.01 k g / s , what tube length L is needed to provide an exit temperature of T m , o = 14 ° C ? With 10 tubes passing through a tank of total volume V = 10 m 3 , which initially contains 80 ice by volume, how long would it take to completely melt the ice? The density and latent heat of fusion of ice are 920 k g / m 3 and 3.34 × 10 5 J / k g , respectively.
(b) The air outlet temperature may be regulated by adjusting the tube mass flow rate. For the tube length determined in part (a), compute and plot T m , o as a function of m ˙ for 0.005 m ˙ 0.05 k g / s . If the dwelling cooled by this system requires approximately 0.05 k g / s of air at 16 ° C , what design and operating conditions should be prescribed for the system?

Blurred answer
Students have asked these similar questions
The evaporator section of a heat pump is installed in a large tank of water, which is used as a heat source during the winter. As energy is extracted from the water, it begins to freeze, creating an ice/water bath at 0°C, which may be used for air conditioning during the summer. Consider summer cooling conditions for which air is passed through an array of copper tubes, each of inside diameter D = 59 mm, submerged in the bath.   (a)  If air enters each tube at a mean temperature of Tm,i = 25°C and a flow rate of m·=0.01 kg/s, what tube length L is needed to provide an exit temperature of Tm,o = 16°C? With 10 tubes passing through a tank of total volume V = 11 m3, which initially contains 83% ice by volume, how long would it take to completely melt the ice? The density and latent heat of fusion of ice are 933 kg/m3 and hsf = 3.34 × 10^5 J/kg, respectively.
Design a hydrocooling unit that can cool fruits andvegetables from 30 to 5°C at a rate of 20,000 kg/h under thefollowing conditions:The unit will be of flood type, which will cool the productsas they are conveyed into the channel filled with water. Theproducts will be dropped into the channel filled with water atone end and be picked up at the other end. The channel canbe as wide as 3 m and as high as 90 cm. The water is to becirculated and cooled by the evaporator section of a refrigerationsystem. The refrigerant temperature inside the coils is tobe 22°C, and the water temperature is not to drop below 1°Cand not to exceed 6°C.Assuming reasonable values for the average product density,specific heat, and porosity (the fraction of air volume ina box), recommend reasonable values for (a) the water velocitythrough the channel and (b) the refrigeration capacity ofthe refrigeration system.
Saturated steam at 1 atm is condensed on the external surface of a copper tube withan outside diameter 16 mm and tube wall of thickness 0.5 mm. The tube is cooledinternally by water with a mass flow rate of 0.06 kg/s, which in turn is raised intemperature from 15 oC to 60 oC as it flows through the tube.Take the heat-transfer coefficient at the condensing side as 10.0 kW/m2K and theisobaric specific heat-capacity of water as 4180 J/kg K.i) Calculate the heat transfer rate to the cooling water.ii) Calculate the length of the tube.  Use the steam property table (Roger and Mayhew)

Chapter 8 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 8 - Consider a circular tube of diameter D and length...Ch. 8 - Consider flow in a circular tube. Within the test...Ch. 8 - Consider a cylindrical nuclear fuel rod of length...Ch. 8 - Consider the laminar thermal boundary layer...Ch. 8 - In a particular application involving fluid flow...Ch. 8 - A flat-plate solar collector is used w heat...Ch. 8 - Atmospheric air enters the heated section of a...Ch. 8 - Fluid enters a tube with a flow rate of 0.015kg/s...Ch. 8 - Water at 300 K and a flow rate of 5kg/s enters a...Ch. 8 - Slug flow is an idealized tube flow condition for...Ch. 8 - Superimposing a control volume that is...Ch. 8 - An experimental nuclear core simulation apparatus...Ch. 8 - Water at 20°C and a flow rate of 0.1kg/s enters a...Ch. 8 - Engine oil is heated by flowing through a circular...Ch. 8 - Engine oil flows through a 25mm -diameter tube at...Ch. 8 - In the final stages of production, a...Ch. 8 - An oil preheater consists of a single tube of 10mm...Ch. 8 - Engine oil flows at a rate of 1kg/s through a 5mm...Ch. 8 - Air at p=1atm enters a thin-walled ( D=5-mm...Ch. 8 - To cool a summer home without using a vapor...Ch. 8 - Batch processes are often used in chemical and...Ch. 8 - The evaporator section of a heat pump is installed...Ch. 8 - Water flowing at 2kg/s through a 40mm diameter...Ch. 8 - Consider the conditions associated with the hot...Ch. 8 - A thick-walled, stainless steel (AISI 316) pipe of...Ch. 8 - An air heater for an industrial application...Ch. 8 - Consider fully developed conditions in a circular...Ch. 8 - Consider the encased pipe of Problem 4.29, but now...Ch. 8 - Water flows through a thick-wailed tube with an...Ch. 8 - Atmospheric air enters a 10m -long. 150mm...Ch. 8 - NaK (45%/55). which is an alloy of sodium and...Ch. 8 - The products of combustion from a burner are...Ch. 8 - Liquid mercury at 0.5kg/s is lo be heated from 300...Ch. 8 - The surface of a 50-mm-diameter. thin-walled tube...Ch. 8 - Consider a horizontal, thin-walled circular tube...Ch. 8 - Consider pressurized liquid water flowing at...Ch. 8 - Cooling water flows through the 25.4-mm -diameter...Ch. 8 - The air passage for cooling a gas turbine vane can...Ch. 8 - The core of a high-temperature, gas-cooled nuclear...Ch. 8 - Air at 200kPa enters a 2-m -long, thin-walled tube...Ch. 8 - Heated air required for a food-drying process is...Ch. 8 - Consider laminar flow of a fluid with Pr=4 that...Ch. 8 - A common procedure for cooling a high-performance...Ch. 8 - One way to cool chips mounted on the circuit...Ch. 8 - Refrigerant- 134a is being transported a 0.1 kg/s...Ch. 8 - Oil at 150°C flows slowly through a long,...Ch. 8 - Exhaust gases from a wire processing oven are...Ch. 8 - A hot fluid passes through a thin-walled tube of...Ch. 8 - Consider a thin-walled tube of 10mm diameter and...Ch. 8 - Water at a flow rate of m =0.215kg/s is cooled...Ch. 8 - To maintain pump power requirements per unit flow...Ch. 8 - Consider a thin-walled, metallic tube of length...Ch. 8 - A circular tube of diameter D=0.2mm and length...Ch. 8 - Repeat Problem 8.66 for a circular tube of...Ch. 8 - Heat is to be removed from a reaction vessel...Ch. 8 - A healing contractor must heat 0.2kg/s of water...Ch. 8 - A thin-walled tube with a diameter of 6 mm and...Ch. 8 - A 50mm -diameter, thin—walled metal pipe covered...Ch. 8 - A thin-walled, uninsulated 0.3m -diameter duct is...Ch. 8 - Pressurized water at Tm,i=200C is pumped at...Ch. 8 - Water at 290K and 0.2kg/s flows through a Teflon...Ch. 8 - The temperature of flue gases flowing through the...Ch. 8 - In a biomedical supplies manufacturing process, a...Ch. 8 - Consider the ground source heat pump of Problem...Ch. 8 - For a sharp-edged inlet and a combined entry...Ch. 8 - Fluid enters a thin-walled rube of 5-mni diameter...Ch. 8 - Air at 3104kg/s and 27C enters a rectangular duct...Ch. 8 - Air at 25C flows at 30106kg/s within 100mm -long...Ch. 8 - A cold plate is an active cooling device that is...Ch. 8 - The cold plate design of Problem 8.82 has not been...Ch. 8 - A device that recovers heat from high-temperature...Ch. 8 - Air at 1 atm and 285K enters a 2-m -long...Ch. 8 - A double-wall heat exchanger is used to transfer...Ch. 8 - Consider laminar, fully developed flow in a...Ch. 8 - You have been asked to perform a feasibility study...Ch. 8 - A coolant flows through a rectangular channel...Ch. 8 - An electronic circuit board dissipating 50W is...Ch. 8 - To slow down large prime movers like locomotives,...Ch. 8 - A printed circuit board (PCB) is cooled by...Ch. 8 - Water at m=0.02kg/s and Tm,i=20C enters an annular...Ch. 8 - tFor the conditions of Problem 8.93, how tong must...Ch. 8 - Referring 10 Figure 8.11, consider conditions in...Ch. 8 - Consider the air healer of Problem 8.38, but now...Ch. 8 - Consider a concentric tube annulus for which the...Ch. 8 - It is common practice (o recover waste heat from...Ch. 8 - A concentric lube arrangement, for which the inner...Ch. 8 - Consider sterilization of the pharmaceutical...Ch. 8 - An engineer proposes to insert a solid rod of...Ch. 8 - An electrical power transformer of diameter 230mm...Ch. 8 - A bayonet cooler is used to reduce the temperature...Ch. 8 - The mold used in an injection molding process...Ch. 8 - Prob. 8.107PCh. 8 - Prob. 8.108PCh. 8 - Consider the microchannel cooling arrangement...Ch. 8 - The onset of turbulence in a gas flowing within a...Ch. 8 - Due to its comparatively large thermal...Ch. 8 - A novel scheme for dissipating heat from the chips...Ch. 8 - An experiment is designed to study microscale...Ch. 8 - Determine the tube diameter that corresponds to a...Ch. 8 - An experiment is devised to measure liquid flow...Ch. 8 - In the processing of very long plastic tubes of...Ch. 8 - Air at 300K and a flow rate of 3kg/h passes upward...Ch. 8 - What is the convection mass transfer coefficient...Ch. 8 - Air flowing through a tube of 75mm diameter passes...Ch. 8 - Consider gas flow of mass density and rate m...Ch. 8 - Atmospheric air at 25C and 3104kg/s flows through...Ch. 8 - Air at 25C and 1atm is in fully developed flow at...Ch. 8 - A humidifier consists of a bundle of vertical...Ch. 8 - The final step of a manufacturing process in which...Ch. 8 - Dry air is inhaled at a rate of lo liter/win...Ch. 8 - A mass transfer Operation is preceded by laminar...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license