BuyFindarrow_forward

Chemistry & Chemical Reactivity

10th Edition
John C. Kotz + 3 others
ISBN: 9781337399074

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry & Chemical Reactivity

10th Edition
John C. Kotz + 3 others
ISBN: 9781337399074
Textbook Problem

Consider an electrochemical cell based on the half-reactions Ni2+(aq) + 2 e → Ni(s) and Cd2+(aq) + 2e → Cd(s).

  1. (a) Diagram the cell, and label each of the components (including the anode, cathode, and salt bridge).
  2. (b) Use the equations for the half-reactions to write a balanced, net ionic equation for the overall cell reaction.
  3. (c) What is the polarity of each electrode?
  4. (d) What is the value of E°cell?
  5. (e) In which direction do electrons flow in the external circuit?
  6. (f) Assume that a salt bridge containing NaNO3 connects the two half-cells. In which direction do the Na+(aq) ions move? In which direction do the NO3 (aq) ions move?
  7. (g) Calculate the equilibrium constant for the reaction.
  8. (h) If the concentration of Cd2+ is reduced to 0.010 M and [Ni2+] = 1.0 M, what is the value of Ecell? Is the net reaction still the reaction given in part (b)?
  9. (i) If 0.050 A is drawn from the battery, how long can it last if you begin with 1.0 L of each of the solutions and each was initially 1.0 M in dissolved species? Each electrode weighs 50.0 g in the beginning.

(a)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The cell has to be drawn and label each of the component.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

Explanation

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd

(b)

Interpretation Introduction

Interpretation:

To determine the following.

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The balance equation has to be given.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

(c)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The polarity of each electrode has to be determined.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

(d)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The Ecello has to be calculated.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

 (e)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The direction in which electrons flow in the external circuit has to be given.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

(f)

Interpretation Introduction

Interpretation:

To determine the following.

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

Assume that a salt bride containing NaNO3 connect the two half cells. It has to be identified in which direction do Na+(aq) ions and NO3- (aq) move.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

(g)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The equilibrium constant has to be determined.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

(h)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

If the concentration of Cd2+(aq) is reduced to 0.010 M and [Ni2+]=1.0 M. The Ecello of the reaction has to be calculated.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

(i)

Interpretation Introduction

Interpretation:

The half reactions are as follows.

Ni2+(aq) + 2e- Ni(s) and Cd2+(aq)+2e- Cd(s)

The time the battery will last if 0.050 M is drawn from the battery has to be determined.

Concept introduction:

Voltaic cell or Galvanic cell:

The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.

A voltaic cell converts chemical energy into electrical energy.

It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.

The chemical reaction in the half cell is an oxidation reduction (redox)reactions.

For example:

Cell diagram of voltaic or galvanic cell is as follows.

                 Salt bridge                        Cu(s)|Cu2+(aq)  ||  Ag+(aq)|Ag(s)____________     ___________                                       Half cell             Half cell

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 19 Solutions

Show all chapter solutions add
Sect-19.8 P-19.11CYUSect-19.9 P-1.1ACPSect-19.9 P-1.2ACPSect-19.9 P-1.3ACPSect-19.9 P-2.1ACPSect-19.9 P-2.2ACPSect-19.9 P-2.3ACPSect-19.9 P-2.4ACPSect-19.9 P-2.5ACPCh-19 P-1PSCh-19 P-2PSCh-19 P-3PSCh-19 P-4PSCh-19 P-5PSCh-19 P-6PSCh-19 P-7PSCh-19 P-8PSCh-19 P-9PSCh-19 P-10PSCh-19 P-11PSCh-19 P-12PSCh-19 P-13PSCh-19 P-14PSCh-19 P-15PSCh-19 P-16PSCh-19 P-17PSCh-19 P-18PSCh-19 P-19PSCh-19 P-20PSCh-19 P-21PSCh-19 P-22PSCh-19 P-23PSCh-19 P-24PSCh-19 P-25PSCh-19 P-26PSCh-19 P-27PSCh-19 P-28PSCh-19 P-29PSCh-19 P-30PSCh-19 P-31PSCh-19 P-32PSCh-19 P-33PSCh-19 P-34PSCh-19 P-35PSCh-19 P-36PSCh-19 P-37PSCh-19 P-38PSCh-19 P-39PSCh-19 P-40PSCh-19 P-41PSCh-19 P-42PSCh-19 P-43PSCh-19 P-44PSCh-19 P-45PSCh-19 P-46PSCh-19 P-47PSCh-19 P-48PSCh-19 P-49PSCh-19 P-50PSCh-19 P-51PSCh-19 P-52PSCh-19 P-53PSCh-19 P-54PSCh-19 P-55PSCh-19 P-56PSCh-19 P-57GQCh-19 P-58GQCh-19 P-59GQCh-19 P-60GQCh-19 P-61GQCh-19 P-62GQCh-19 P-63GQCh-19 P-64GQCh-19 P-65GQCh-19 P-66GQCh-19 P-67GQCh-19 P-68GQCh-19 P-69GQCh-19 P-70GQCh-19 P-71GQCh-19 P-72GQCh-19 P-73GQCh-19 P-74GQCh-19 P-75GQCh-19 P-76GQCh-19 P-77GQCh-19 P-78GQCh-19 P-79GQCh-19 P-80GQCh-19 P-81GQCh-19 P-82GQCh-19 P-83GQCh-19 P-84GQCh-19 P-85GQCh-19 P-86GQCh-19 P-87GQCh-19 P-88GQCh-19 P-89GQCh-19 P-90GQCh-19 P-91GQCh-19 P-92GQCh-19 P-93GQCh-19 P-94GQCh-19 P-95GQCh-19 P-96GQCh-19 P-97GQCh-19 P-98GQCh-19 P-99GQCh-19 P-100GQCh-19 P-101GQCh-19 P-102GQCh-19 P-103GQCh-19 P-104GQCh-19 P-105ILCh-19 P-106ILCh-19 P-107ILCh-19 P-108ILCh-19 P-109ILCh-19 P-110ILCh-19 P-111SCQCh-19 P-112SCQCh-19 P-113SCQCh-19 P-114SCQCh-19 P-115SCQ

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

A slice of peach pie supplies 357 calories with 48 units of vitamin A; one large peach provides 42 calories and...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

Why don’t red dwarfs become giant stars?

Horizons: Exploring the Universe (MindTap Course List)

Consider the system pictured in Figure P28.26. A 15.0-cm horizontal wire of mass 15.0 g is placed between two t...

Physics for Scientists and Engineers, Technology Update (No access codes included)