   Chapter 15, Problem 56QAP ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

#### Solutions

Chapter
Section ### Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
13 views

# 56. Calculate the new molarity (hat results when 250. mL of water is added to each of the following solutions. a. 125 mLof0.251 M HCl b. 445 mL of 0.499 M H2SO4 c. 5.25 L of 0.101 M HNO1 d. 11.2 mL of 14.5 M H2CH3O2

Interpretation Introduction

(a)

Interpretation:

The new molarity after the addition of water is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolution.

Explanation

The initial volume and molarity of HCl solution is given to be 125mL and 0.251M respectively.

The conversion of units of 125mL into L is done as,

125mL=12501000L=0.125L

The number of moles of a solute is calculated by the formula,

Numberofmolesofsolute=Volumeofsolution×Molarity        (1)

Substitute the values of initial volume and molarity of HCl solution in the equation (1).

Numberofmolesofsolute=0.125L×0.251M=0.0314moles

It is given that 250.0mL of water is added in the given solution. During the dilution, the amount of the solute particles in initial and final solution remains same, only the amount of solvent gets changed.

The conversion of units of 250.0mL into L is done as,

250.0mL=250

Interpretation Introduction

(b)

Interpretation:

The new molarity after the addition of water is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolution.

Interpretation Introduction

(c)

Interpretation:

The new molarity after the addition of water is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolution.

Interpretation Introduction

(d)

Interpretation:

The new molarity after the addition of water is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolution.

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Find more solutions based on key concepts 