Organic Chemistry: Structure and Function
Organic Chemistry: Structure and Function
8th Edition
ISBN: 9781319079451
Author: K. Peter C. Vollhardt, Neil E. Schore
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 19P

(a)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HF should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(b)

Interpretation Introduction

Interpretation: The value of ΔH° involved in the formation of HCl should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(c)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HBr should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(d)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HI should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(e)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CF and HF should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(f)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CCl and HCl should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(g)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CBr and HBr should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(h)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CI and HI should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

Blurred answer
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License