# Find the differentiate form of the given equation.

BuyFind

### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805
BuyFind

### Single Variable Calculus: Concepts...

4th Edition
James Stewart
Publisher: Cengage Learning
ISBN: 9781337687805

#### Solutions

Chapter 3.3, Problem 10E
To determine

Expert Solution

## Answer to Problem 10E

The differentiate form of the given equationis dydx=xcosx(x+cosx)2 .

### Explanation of Solution

Given:

The given equationis y=1+sinxx+cosx .

Calculation:

(fg)'=gf'fg'g2

y=1+sinxx+cosxdydx=(x+cosx)ddx(1+sinx)(1+sinx)ddx(x+cosx)(x+cosx)2

Use the rule ddx(x)=1 , ddx(cosx)=sinx and ddx(sinx)=cosx

dydx=(x+cosx)ddx(1+sinx)(1+sinx)ddx(x+cosx)(x+cosx)2dydx=(x+cosx)(0+cosx)(1+sinx)(1sinx)(x+cosx)2dydx=xcosx+cos2x(1sin2x)(x+cosx)2dydx=xcosx+cos2x1+sin2x(x+cosx)2dydx=xcosx+(cos2x+sin2x)1(x+cosx)2dydx=xcosx+11(x+cosx)2dydx=xcosx(x+cosx)2

Hence the differentiate form of the given equationis dydx=xcosx(x+cosx)2 .

### Have a homework question?

Subscribe to bartleby learn! Ask subject matter experts 30 homework questions each month. Plus, you’ll have access to millions of step-by-step textbook answers!