EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
4th Edition
ISBN: 9781119192107
Author: BULLARD
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
bartleby

Concept explainers

Textbook Question
100%
Book Icon
Chapter 9, Problem 9.54P

Citric acid (C6H8O7) is used in the preparation of many foods, pharmaceuticals, soft drinks, and personal-care products. Although it can be recovered by concentration and crystallization from citrus juices, especially lemons, modem commercial production involves synthesis by fermentation of molasses or other carbohydrates such as glucose or fructose by the fungus Aspergillus niger (A. niger). The process involves addition of the fungus to a fermenter along with glucose, nutrients, water, and air that is bubbled through the fermentation broth After the desired conversion, the resulting liquor is processed first by filtration of the cell mass and other solids from the liquid and then recovery and purification of the citric acid by crystallization.

As part of the evaluation of a proposed continuous fermentation process, you have been asked to estimate the heating or cooling requirement associated with a fermenter that is to produce 10.0 kg of citric acid per hour. Feed to the unit includes (1) an aqueous solution that is 20.0 wt% glucose ( C 6 H 12 O 6 ) , 0.4% ammonia, and the remainder water; and (2) air at 1.2 atm, saturated with water, providing a molar flow rate of oxygen twice that of the glucose. Leaving the fermenter are (3) a gas stream at 1 atm containing N2, unreacted O2, and CO2formed by fermentation, and saturated with water, and (4) a liquid stream containing cell mass produced in the fermenter, water, citric acid, and unreacted ammonia and glucose. All streams may be assumed to be at 25°C, as are the contents of the well-mixed fermenter. The stoichiometry of the fermentation reaction is given by

   C 6 H 12 O 6 ( a q ) + a N H 3 ( a q ) + b O 2 ( g ) c C H 1.79 N 0.2 O 0.5 ( s ) + d C O 2 ( g ) + e H 2 O ( l ) + f C 6 H 8 O 7 ( a q )

where the coefficients of the species (a, b,....) are to be determined. Experiments on the fermentation reaction have found that 70% of the glucose consumed is converted to citric acid and that the respiratory quotient (RQ) is 0.45 (RQ = moles of CO2produced per mole of O2consumed).

The following table gives data for selected process species. Information on other species may be found in Table B.l.

    Species MW(g/mol)    Δ H ^ f ° ( k J / m o l )    Δ H ^ s ° ( k J / m o l )
    glucose(s) 180 -1006.8 9.9
    citric acid(s) 192 -1543.8 22.6
    ammonia(g) 17 -46.19 -35
    cellular material(s) 24.6 -59.9

  1. Use elemental species balances to determine the coefficients in the stoichiometric equation.

  • The system is sized so that 90% of the limiting reactant is consumed. For a citric acid production rate of 10 kg/h, estimate all stream and constituent flow rates in both kg/h and mol/h. What are the volumetric flow rates of air entering the fermenter and of the off-gas stream?
  • The heats of formation for glucose and citric acid given in the above process description are for the species as solids, while the heat of formation of ammonia is for a gas. However, the fermentation reaction involves aqueous solutions of all three species. Show how Hess’s law can be used in estimating heat of formation in an aqueous solution from a heat of formation of either gaseous or solid species. (Note: Heats of solution may be assumed constant.)
  • Determine the rate at which heat must be added to or removed from (state which) the fermenter.
  • Exploratory Exercises—Research and Discover

  • Various strains of A. niger exist, with some being useful in the production of specific chemicals, such as citric acid, and some being harmful. Provide a brief description of how it is to be cultured for the application in this problem.
  • Identify safety issues associated with use of A. niger in the production of citric acid. Pick one of these issues and suggest means for mitigating risks in the process under consideration.
  • Blurred answer
    05:34
    Students have asked these similar questions
    (a) (c) HO OH 1. BH3 2. H₂O₂, NaOH 3. PCC 4. CH3MgBr 5. H3O+ workup Na₂Cr₂O7 H₂SO4, H₂O
    The buildup of oxides of carbon in the atmosphere by the burning of fossil fuels is a driver for human's effect on the world's climate. A chemical solution to this buildup is the removal of these chemicals by reduction to reform småll organic molecules like alkanes and alkenes. Achemist was investigating the removal of carbon dioxide by the following reaction: 2 CO2(g) + 6 H2(8) + C2H5OH(g) + 3 H20(g) Species AfH (kJ mol-1) S(JK-mol1) CO2(g) H2(g) C2H5OH(g) -393.5 213.8 0.00 131.1 -277.4 159.9 H20(g) -241.8 188.8 Using the data from the table above, calculate the enthalpy change, ArH, and entropy change, ArS, for this reaction. Show your working.
    C6H12O6(aq) + 6O2(g) 6CO2(g) + 6H2O(l)ΔH = –2802.7 kJ mol –1a) Write an expression for the equilibrium constant for this reaction.b) At equilibrium, the concentration of the reactants and products are determined as [CO2] = 0.30 M, [O2] = 0.040 M and [C6H12O6] = 0.065 M. Determine the value of the equilibrium constant (Kc) and predict the whether the products or reactants will be favoured at equilibrium.c) Given that the concentrations of the reactants and products at a particular time are [CO2] = 0.65 M, [O2] = 0.020 M and [C6H12O6] = 0.055 M, determine the reaction quotient (Qc). Compare the Kc and Qc values and predict the favoured direction of the reaction.d) Explain the effect on equilibrium of:i) Increasing temperatureii) Increasing pressureiii) Decreasing the concentration of oxygeniv) Increasing the concentration of carbon dioxidev) Adding a catalyst

    Chapter 9 Solutions

    EBK ELEMENTARY PRINCIPLES OF CHEMICAL P

    Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - In the production of many microelectronic devices,...Ch. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Carbon monoxide at 25°C and steam at 150°C are fed...Ch. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Ethyl alcohol (ethanol) can be produced by the...Ch. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Formaldehyde is produced commercially by the...Ch. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - A gas mixture containing 85 mole% methane and the...Ch. 9 - Ethylene oxide is produced by the catalytic...Ch. 9 - Cumene (C6H5C3H7) is produced by reacting benzene...Ch. 9 - Ethylbenzene is converted to styrene in the...Ch. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.36PCh. 9 - Prob. 9.37PCh. 9 - Coke can be converted into CO—a fuel gas—in the...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - The equilibrium constant for the ethane...Ch. 9 - You are checking the performance of a reactor in...Ch. 9 - Hydrogen is produced in the steam reforming of...Ch. 9 - Prob. 9.45PCh. 9 - Five cubic meters of a 1.00-molar aqueous sulfuric...Ch. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Calcium chloride is a salt used in a number of...Ch. 9 - A dilute aqueous solution of sulfuric acid at 25°C...Ch. 9 - A 2.00 mole% sulfuric acid solution is neutralized...Ch. 9 - A 12.0-molar solution of sodium hydroxide (SG =...Ch. 9 - Citric acid (C6H8O7) is used in the preparation of...Ch. 9 - Ammonia scrubbing is one of many processes for...Ch. 9 - Various uses for nitric acid are given in Problem...Ch. 9 - A natural gas is analyzed and found to consist of...Ch. 9 - Prob. 9.58PCh. 9 - A fuel gas is known to contain methane, ethane,...Ch. 9 - A fuel gas containing 85.0 mole% methane and the...Ch. 9 - A mixture of air and a fine spray of gasoline at...Ch. 9 - The heating value of a fuel oil is to be measured...Ch. 9 - Methanol vapor is burned with excess air in a...Ch. 9 - Methane at 25°C is burned in a boiler furnace with...Ch. 9 - Methane is burned completely with 40% excess air....Ch. 9 - A gaseous fuel containing methane and ethane is...Ch. 9 - A coal contains 73.0 wt% C, 4.7% H (not including...Ch. 9 - A mixture of methane, ethane, and argon at 25°C is...Ch. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - Prob. 9.71PCh. 9 - A bituminous coal is burned with air in a boiler...Ch. 9 - Prob. 9.73PCh. 9 - A natural gas containing 82.0 mole% CH4and the...Ch. 9 - Prob. 9.75PCh. 9 - Liquid n-pentane at 25°C is burned with 30% excess...Ch. 9 - Methane is burned with 25% excess air in a...Ch. 9 - Methane and 30% excess air are to be fed to a...Ch. 9 - Prob. 9.79PCh. 9 - In Problem 9.79, the synthesis of methanol from...Ch. 9 - Natural gas that contains methane, ethane, and...Ch. 9 - Prob. 9.82PCh. 9 - The wastewater treatment plant at the Ossabaw...

    Additional Science Textbook Solutions

    Find more solutions based on key concepts
    The decomposition of cyclohexane to benzene and hydrogen is mass transfer–limited at high temperatures. The re...

    Elements of Chemical Reaction Engineering (5th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)

    A byte is made up of eight a. CPUs b. addresses c. variables d. bits

    Starting Out with Java: From Control Structures through Objects (6th Edition)

    Knowledge Booster
    Background pattern image
    Chemistry
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
    Similar questions
    SEE MORE QUESTIONS
    Recommended textbooks for you
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781259911156
    Author:Raymond Chang Dr., Jason Overby Professor
    Publisher:McGraw-Hill Education
    Text book image
    Principles of Instrumental Analysis
    Chemistry
    ISBN:9781305577213
    Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9780078021558
    Author:Janice Gorzynski Smith Dr.
    Publisher:McGraw-Hill Education
    Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Text book image
    Elementary Principles of Chemical Processes, Bind...
    Chemistry
    ISBN:9781118431221
    Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
    Publisher:WILEY