Chemical Principles: The Quest for Insight
Chemical Principles: The Quest for Insight
7th Edition
ISBN: 9781464183959
Author: Peter Atkins, Loretta Jones, Leroy Laverman
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2E.12E

(a)

Interpretation Introduction

Interpretation:

The VSEPR formula and shape for PF4 molecule have to be predicted.

Concept Introduction:

Valence Shell Electron Pair Repulsion model predicts shape by inclusion of bond angles and most distant arrangement of atoms that leads to minimum repulsion. For the molecules that have no lone pairs around the central atom the bonded-atom unshared -pair arrangement is decided by the table as follows:

Number ofelectron pairsMolecular shape2Linear3Trigonal Planar4Tetrahedral5Trigonal Bipyramidal6Octahedral7Pentagonal Bipyramidal

In order to determine the shape the steps to be followed are indicated as follows:

  1. 1. Lewis structure of molecule should be written.
  2. 2. The type electron arrangement around the central atom should be identified around the central atom. This essentially refers to determination of bond pairs and unshared or lone pairs around central atoms.
  3. 3. Then bonded-atom unshared -pair arrangement that can maximize the distance of electron pairs about central atom determines the shape.

For molecules that have lone pairs around central atom, lone pairs influence shape, because there are no atoms at the positions occupied by these lone pairs. The key rule that governs the molecular shape, in this case, is the extent of lone –lone pair repulsions are far greater than lone bond pair or bond pair-bond pair repulsions. The table that summarized the molecular shapes possible for various combinations of bonded and lone pairs are given as follows:

Steric numberNumber of lone pairsMolecular geometryBond angles20Linear180 °301Trigonal planarBent120 °4012TetrahedralTrigonal pyramidalBent109.5 °50123Trigonal Bi-pyramidalSee-SawT-shapedLinear90 °,120 °,180 °6012OctahedralSquare pyramidalSquare planar90 °,180 °

(a)

Expert Solution
Check Mark

Answer to Problem 2E.12E

The shape for PF4 molecule is see-saw and corresponding VSEPR formula is AX4E.

Explanation of Solution

PF4 has P as central atom. P has five valence electrons while F possesses seven valence electrons.

Total valence electrons are sum of the valence electrons on each atom along with uni-negative charge in PF4 calculated as follows:

  Total valence electrons=5+7(4)+1=34

The skeleton structure in PF4 has four bond pairs that comprise 8 electrons. The electrons left to be allocated as lone pairs are determined as follows:

  Remaining electrons=348=26

These 13 electron pairs are assigned as lone pairs of each of the F atoms to satisfy its octet.

Hence, the Lewis structure PF4 that has shape corresponding trigonal bi-pyramidal arrangement is illustrated as follows:

Chemical Principles: The Quest for Insight, Chapter 2, Problem 2E.12E , additional homework tip  1

If lone pairs are represented by E, central atom with A and other attached bon pairs by X, then for any see-saw species the VSEPR formula is predicted as AX4E .

It is evident that in PF4 the central phosphorus atom has four bond pairs and one lone pair. Lone pair tends to be localized in the equatorial trigonal plane so as to have minimum repulsions in accordance with VSPER model. This results in see-saw shape in PF4 molecule.

(b)

Interpretation Introduction

Interpretation:

The VSEPR formula and shape for ICl4+ ion have to be predicted.

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 2E.12E

The shape for ICl4+ is see-saw and corresponding VSEPR formula is AX4E.

Explanation of Solution

ICl4+ has I as central atom. I has seven valence electrons and chlorine also possesses 7 valence electrons.

Total valence electrons are sum of the valence electrons on each chlorine and central iodine in ICl4+ calculated as follows:

  Total valence electrons=7+7(4)1=34

The skeleton structure in ICl4+ has four bond pairs that comprise 8 electrons. The electrons left to be allocated as lone pairs are determined as follows:

  Remaining electrons=348=26

These 13 electron pairs are allotted as lone pairs of each of the chlorine atoms and central iodine to satisfy respective octets. Hence, the Lewis structure and corresponding VSPER geometry in ICl4+ is illustrated below.

Chemical Principles: The Quest for Insight, Chapter 2, Problem 2E.12E , additional homework tip  2

It is evident that in ICl4+ the central iodine atom has four bond pairs to four chlorine atoms and one lone pair. If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for any see-saw species the VSEPR formula is predicted as AX4E.

Lone pairs tend to occupy the equatorial locations of trigonal plane in trigonal bi-pyramidal arrangement so as to have minimum repulsions in accordance with VSPER model. This results in see-saw shaped ICl4+.

(c)

Interpretation Introduction

Interpretation:

The VSEPR formula and shape for PF5 molecule have to be predicted.

Concept Introduction:

Refer to part (a).

(c)

Expert Solution
Check Mark

Answer to Problem 2E.12E

The shape for PF5 is trigonal pyramidal and corresponding VSEPR formula is AX5.

Explanation of Solution

PF5 has P as central atom. P has five valence electrons while F possesses seven valence electrons.

Total valence electrons are sum of the valence electrons on each atom along with uni-negative charge in PF5 calculated as follows:

  Total valence electrons=5+7(5)=40

The skeleton structure in PF5 has five bond pairs that comprises 10 electrons. The electrons left to be allocated as lone pairs are determined as follows:

  Remaining electrons=4010=30

These 15 electron pairs are assigned as lone pairs of each of the F atoms to satisfy respective octets.

Hence, Lewis structure of PF5 that has shape corresponding trigonal bi-pyramidal arrangement is illustrated below.

Chemical Principles: The Quest for Insight, Chapter 2, Problem 2E.12E , additional homework tip  3

If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for any trigonal pyramidal geometry the VSEPR formula is predicted as AX5 .

It is evident that in PF5, the central phosphorus atom has five bond pairs and no lone pairs. To have minimum repulsions three fluorine form bonds in trigonal equatorial plane while two other fluorine atoms form bonds in axial plane to have minimum repulsions in accordance with VSPER model. This results in trigonal pyramidal shape in PF5 molecule.

(d)

Interpretation Introduction

Interpretation:

The VSEPR formula and shape for xenon terafluoride molecule has to be predicted.

Concept Introduction:

Refer to part (a).

(d)

Expert Solution
Check Mark

Answer to Problem 2E.12E

The shape for xenon terafluoride molecule is square planar and corresponding VSEPR formula is AX4E2.

Explanation of Solution

Xenon terafluoride has Xe as central atom. Xe has eight valence electrons and fluorine possesses 7 valence electrons.

Total valence electrons are sum of the valence electrons on each oxygen atom and central Xe in xenon terafluoride calculated as follows:

  Total valence electrons=8+7(4)=36

The skeleton structure in XeF4 has four bond pairs. This comprises of 8 electrons. The electrons left to be allocated as lone pairs are determined as follows:

  Remaining electrons=368=28

These 14 electron pairs are allotted as lone pairs of each of the fluorine atoms and central xenon to satisfy respective octets. Thus, the Lewis structure and corresponding VSEPR geometry XeF4 is illustrated below:

Chemical Principles: The Quest for Insight, Chapter 2, Problem 2E.12E , additional homework tip  4

It is evident that in XeF4 the central xenon atom has four bond pairs and two lone pairs. Lone pairs tend to occupy the two opposite apex positions of octahedron so as to have minimum repulsions in accordance with VSPER model. This results in square planar XeF4 molecule.

If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for square planar any species the VSEPR formula is predicted as AX4E2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
If the dipole moment of a diatomic molecule is found to be 1.04 D, and its bond length is found to be 124 pm, what is the fractional charge on the atoms of the molecule in Coulombs (C)?
Draw the Lewis structure of phosphate (PO₄³⁻) by following the octet rule on all atoms and then determine the hybridization of the central atom.
Write a Lewis structure for the amide ion, NH2─, and assign formal charges to each atom.

Chapter 2 Solutions

Chemical Principles: The Quest for Insight

Ch. 2 - Prob. 2A.3ECh. 2 - Prob. 2A.4ECh. 2 - Prob. 2A.5ECh. 2 - Prob. 2A.6ECh. 2 - Prob. 2A.7ECh. 2 - Prob. 2A.8ECh. 2 - Prob. 2A.9ECh. 2 - Prob. 2A.10ECh. 2 - Prob. 2A.11ECh. 2 - Prob. 2A.12ECh. 2 - Prob. 2A.13ECh. 2 - Prob. 2A.14ECh. 2 - Prob. 2A.15ECh. 2 - Prob. 2A.16ECh. 2 - Prob. 2A.17ECh. 2 - Prob. 2A.18ECh. 2 - Prob. 2A.19ECh. 2 - Prob. 2A.20ECh. 2 - Prob. 2A.21ECh. 2 - Prob. 2A.22ECh. 2 - Prob. 2A.23ECh. 2 - Prob. 2A.24ECh. 2 - Prob. 2A.25ECh. 2 - Prob. 2A.26ECh. 2 - Prob. 2A.27ECh. 2 - Prob. 2A.28ECh. 2 - Prob. 2A.29ECh. 2 - Prob. 2A.30ECh. 2 - Prob. 2B.1ASTCh. 2 - Prob. 2B.1BSTCh. 2 - Prob. 2B.2ASTCh. 2 - Prob. 2B.2BSTCh. 2 - Prob. 2B.3ASTCh. 2 - Prob. 2B.3BSTCh. 2 - Prob. 2B.4ASTCh. 2 - Prob. 2B.4BSTCh. 2 - Prob. 2B.5ASTCh. 2 - Prob. 2B.5BSTCh. 2 - Prob. 2B.1ECh. 2 - Prob. 2B.2ECh. 2 - Prob. 2B.3ECh. 2 - Prob. 2B.4ECh. 2 - Prob. 2B.5ECh. 2 - Prob. 2B.6ECh. 2 - Prob. 2B.7ECh. 2 - Prob. 2B.8ECh. 2 - Prob. 2B.9ECh. 2 - Prob. 2B.10ECh. 2 - Prob. 2B.11ECh. 2 - Prob. 2B.12ECh. 2 - Prob. 2B.13ECh. 2 - Prob. 2B.14ECh. 2 - Prob. 2B.15ECh. 2 - Prob. 2B.16ECh. 2 - Prob. 2B.17ECh. 2 - Prob. 2B.18ECh. 2 - Prob. 2B.19ECh. 2 - Prob. 2B.20ECh. 2 - Prob. 2B.21ECh. 2 - Prob. 2B.22ECh. 2 - Prob. 2B.23ECh. 2 - Prob. 2B.24ECh. 2 - Prob. 2C.1ASTCh. 2 - Prob. 2C.1BSTCh. 2 - Prob. 2C.2ASTCh. 2 - Prob. 2C.2BSTCh. 2 - Prob. 2C.3ASTCh. 2 - Prob. 2C.3BSTCh. 2 - Prob. 2C.1ECh. 2 - Prob. 2C.2ECh. 2 - Prob. 2C.3ECh. 2 - Prob. 2C.4ECh. 2 - Prob. 2C.5ECh. 2 - Prob. 2C.6ECh. 2 - Prob. 2C.7ECh. 2 - Prob. 2C.8ECh. 2 - Prob. 2C.9ECh. 2 - Prob. 2C.10ECh. 2 - Prob. 2C.11ECh. 2 - Prob. 2C.12ECh. 2 - Prob. 2C.13ECh. 2 - Prob. 2C.14ECh. 2 - Prob. 2C.15ECh. 2 - Prob. 2C.16ECh. 2 - Prob. 2C.17ECh. 2 - Prob. 2C.18ECh. 2 - Prob. 2D.1ASTCh. 2 - Prob. 2D.1BSTCh. 2 - Prob. 2D.2ASTCh. 2 - Prob. 2D.2BSTCh. 2 - Prob. 2D.1ECh. 2 - Prob. 2D.2ECh. 2 - Prob. 2D.3ECh. 2 - Prob. 2D.4ECh. 2 - Prob. 2D.5ECh. 2 - Prob. 2D.6ECh. 2 - Prob. 2D.7ECh. 2 - Prob. 2D.8ECh. 2 - Prob. 2D.9ECh. 2 - Prob. 2D.10ECh. 2 - Prob. 2D.11ECh. 2 - Prob. 2D.12ECh. 2 - Prob. 2D.13ECh. 2 - Prob. 2D.14ECh. 2 - Prob. 2D.15ECh. 2 - Prob. 2D.16ECh. 2 - Prob. 2D.17ECh. 2 - Prob. 2D.18ECh. 2 - Prob. 2D.19ECh. 2 - Prob. 2D.20ECh. 2 - Prob. 2E.1ASTCh. 2 - Prob. 2E.1BSTCh. 2 - Prob. 2E.2ASTCh. 2 - Prob. 2E.2BSTCh. 2 - Prob. 2E.3ASTCh. 2 - Prob. 2E.3BSTCh. 2 - Prob. 2E.4ASTCh. 2 - Prob. 2E.4BSTCh. 2 - Prob. 2E.5ASTCh. 2 - Prob. 2E.5BSTCh. 2 - Prob. 2E.1ECh. 2 - Prob. 2E.2ECh. 2 - Prob. 2E.3ECh. 2 - Prob. 2E.4ECh. 2 - Prob. 2E.5ECh. 2 - Prob. 2E.6ECh. 2 - Prob. 2E.7ECh. 2 - Prob. 2E.8ECh. 2 - Prob. 2E.9ECh. 2 - Prob. 2E.10ECh. 2 - Prob. 2E.11ECh. 2 - Prob. 2E.12ECh. 2 - Prob. 2E.13ECh. 2 - Prob. 2E.14ECh. 2 - Prob. 2E.15ECh. 2 - Prob. 2E.16ECh. 2 - Prob. 2E.17ECh. 2 - Prob. 2E.18ECh. 2 - Prob. 2E.19ECh. 2 - Prob. 2E.20ECh. 2 - Prob. 2E.21ECh. 2 - Prob. 2E.22ECh. 2 - Prob. 2E.23ECh. 2 - Prob. 2E.24ECh. 2 - Prob. 2E.25ECh. 2 - Prob. 2E.26ECh. 2 - Prob. 2E.27ECh. 2 - Prob. 2E.28ECh. 2 - Prob. 2E.29ECh. 2 - Prob. 2E.30ECh. 2 - Prob. 2F.1ASTCh. 2 - Prob. 2F.1BSTCh. 2 - Prob. 2F.2ASTCh. 2 - Prob. 2F.2BSTCh. 2 - Prob. 2F.3ASTCh. 2 - Prob. 2F.3BSTCh. 2 - Prob. 2F.4ASTCh. 2 - Prob. 2F.4BSTCh. 2 - Prob. 2F.1ECh. 2 - Prob. 2F.2ECh. 2 - Prob. 2F.3ECh. 2 - Prob. 2F.4ECh. 2 - Prob. 2F.5ECh. 2 - Prob. 2F.6ECh. 2 - Prob. 2F.7ECh. 2 - Prob. 2F.8ECh. 2 - Prob. 2F.9ECh. 2 - Prob. 2F.10ECh. 2 - Prob. 2F.11ECh. 2 - Prob. 2F.12ECh. 2 - Prob. 2F.13ECh. 2 - Prob. 2F.14ECh. 2 - Prob. 2F.15ECh. 2 - Prob. 2F.16ECh. 2 - Prob. 2F.17ECh. 2 - Prob. 2F.18ECh. 2 - Prob. 2F.19ECh. 2 - Prob. 2F.20ECh. 2 - Prob. 2F.21ECh. 2 - Prob. 2G.1ASTCh. 2 - Prob. 2G.1BSTCh. 2 - Prob. 2G.2ASTCh. 2 - Prob. 2G.2BSTCh. 2 - Prob. 2G.1ECh. 2 - Prob. 2G.2ECh. 2 - Prob. 2G.3ECh. 2 - Prob. 2G.4ECh. 2 - Prob. 2G.5ECh. 2 - Prob. 2G.6ECh. 2 - Prob. 2G.7ECh. 2 - Prob. 2G.8ECh. 2 - Prob. 2G.9ECh. 2 - Prob. 2G.11ECh. 2 - Prob. 2G.12ECh. 2 - Prob. 2G.13ECh. 2 - Prob. 2G.14ECh. 2 - Prob. 2G.15ECh. 2 - Prob. 2G.16ECh. 2 - Prob. 2G.17ECh. 2 - Prob. 2G.18ECh. 2 - Prob. 2G.19ECh. 2 - Prob. 2G.20ECh. 2 - Prob. 2G.21ECh. 2 - Prob. 2G.22ECh. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10ECh. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.19ECh. 2 - Prob. 2.22ECh. 2 - Prob. 2.23ECh. 2 - Prob. 2.24ECh. 2 - Prob. 2.25ECh. 2 - Prob. 2.26ECh. 2 - Prob. 2.27ECh. 2 - Prob. 2.28ECh. 2 - Prob. 2.29ECh. 2 - Prob. 2.30ECh. 2 - Prob. 2.31ECh. 2 - Prob. 2.32ECh. 2 - Prob. 2.33ECh. 2 - Prob. 2.34ECh. 2 - Prob. 2.35ECh. 2 - Prob. 2.36ECh. 2 - Prob. 2.37ECh. 2 - Prob. 2.39ECh. 2 - Prob. 2.40ECh. 2 - Prob. 2.41ECh. 2 - Prob. 2.42ECh. 2 - Prob. 2.43ECh. 2 - Prob. 2.44ECh. 2 - Prob. 2.45ECh. 2 - Prob. 2.46ECh. 2 - Prob. 2.47ECh. 2 - Prob. 2.48ECh. 2 - Prob. 2.49ECh. 2 - Prob. 2.50ECh. 2 - Prob. 2.51ECh. 2 - Prob. 2.52ECh. 2 - Prob. 2.53ECh. 2 - Prob. 2.54ECh. 2 - Prob. 2.55ECh. 2 - Prob. 2.56ECh. 2 - Prob. 2.57ECh. 2 - Prob. 2.58ECh. 2 - Prob. 2.59ECh. 2 - Prob. 2.60ECh. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - Prob. 2.63ECh. 2 - Prob. 2.64E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
INTRODUCTION TO MOLECULAR QUANTUM MECHANICS -Valence bond theory - 1; Author: AGK Chemistry;https://www.youtube.com/watch?v=U8kPBPqDIwM;License: Standard YouTube License, CC-BY