EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
4th Edition
ISBN: 9781119192107
Author: BULLARD
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.91P

An aqueous waste stream leaving a process contains 10.0 wt% sulfuric acid and l kg nitric acid per kg sulfuric acid. The ?ow rate of sulfuric acid in the waste stream is 1000 kg/h. The acids are neutralized before being sent to a wastewater treatment facility by combining the waste stream with an aqueous slurry of solid calcium carbonate that contains 2 kg of recycled liquid per kg solid calcium carbonate. (The source of the recycled liquid will be given later in the process description.)

The following neutralization reactions occur in the reactor:

   CaCO 3 +H 2 SO 4 CaSO 4 +H 2 O+CO 2 CaCO 3 +2HNO 2 Ca ( NO 3 ) 2 +H 2 O+CO 2

The sulfuric and nitric acids and calcium carbonate fed to the reactor are completely consumed. The carbon dioxide leaving the reactor is compressed to 30 atm absolute and 40°C and sent elsewhere in the plant. The remaining reactor ef?uents are sent to a crystallizer operating at 30°C, at which temperature the solubility of calcium sulfate is 2.0g CaSO4/1000 g H2O. Calcium sulfate crystals form in the crystallizer and all other species remain in solution.

The slurry leaving the crystallizer is ?ltered to produce (i) a ?lter cake containing 96% calcium sulfate crystals and the remainder entrained saturated calcium sulfate solution, and (ii) a ?ltrate solution saturated with CaSO4, at 30°C that also contains dissolved calcium nitrate. The ?ltrate is split, with a portion being recycled to mix with the solid calcium carbonate to form the slurry fed to the reactor, and the remainder being sent to the wastewater treatment facility.

  1. Draw and completely label a ?owchart for this process.

  • Speculate on why the acids must be neutralized before being sent to the wastewater treatment facility.
  • Calculate the mass ?ow rates (kg/h) of the calcium carbonate fed to the process and of the ?lter cake; also determine the mass ?ow rates and compositions of the solution sent to the wastewater facility and of the recycle stream. (Caution: If you write a water balance around the reactor or the overall system, remember that water is a reaction product and not just an inert solvent.)
  • Calculate the volumetric ?ow rate (L/h) of the carbon dioxide leaving the process at 30 atm absolute and 40°C. Do not assume ideal-gas behavior.
  • The solubility of Ca(NO3)2at 30°C is 152.6 kg Ca(NO3)3per 100 kg H2O. What is the maximum ratio of nitric acid to sulfuric acid in the feed that can be tolerated without encountering difficulties associated with contamination of the calcium sulfate by-product by Ca(NO3)2?
  • Blurred answer
    Students have asked these similar questions
    A steady-state process to recover crystalline potassium chromate (K,CrOz) from an aqueous solution of this salt is required. Four thousand kilograms per hour of a solution that is one-third K,CrO, by mass is joined by a recycle stream containing 36.4% K2CrO7, and the combined stream is fed into an evaporator. The concentrated stream leaving the evaporator contains 49.4% K,CrO; this stream is fed into a crystallizer in which it is cooled (causing crystals of K,CrO, to come out of solution) and then filtered. The filter cake consists of K,CrO, crystals and a solution that contains 36.4% K,CrO, by mass; the crystals account for 95% of the total mass of the filter cake. The solution that passes through the filter, also 36.4% K,CrO,, is the recycle stream. 1- Draw the flowchart of the system and put all known information. 2- Calculate the rate of evaporation, the rate of production of crystalline K,CrO7, the feed rates that the evaporator and the crystallizer must be designed to handle, and…
    A pipet is used to transfer 3.00 mL  of a 2.00 M  stock solution in flask “S” to a 25.00-mL volumetric flask “A,” which is then diluted with DI H2O to the calibration mark. The solution is thoroughly mixed. Next, 3.00 mL  of the solution in volumetric flask “A” is transferred by pipet to a 50.00-mL volumetric flask “B” and then diluted with DI H2O to the calibration mark. Calculate the molarity of the solution in volumetric flask “B.”
    A pipet is used to transfer 5.00 mL of a 1.25 M stock solution in flask “S” to a 25.00-mL volumetric flask “B,” which is then diluted with DI H2O to the calibration mark. The solution is thoroughly mixed. Next, 3.00 mL of the solution in volumetric flask “A” is transferred by pipet to a 50.00-mL volumetric flask “B” and then diluted with DI H2O to the calibration mark. Calculate the molarity of the solution in volumetric flask “B.”

    Chapter 6 Solutions

    EBK ELEMENTARY PRINCIPLES OF CHEMICAL P

    Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Air at 50% relative humidity is cooled...Ch. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Air at 90°C and 1.00 atm (absolute) contains 10.0...Ch. 6 - When fermentation units are operated with high...Ch. 6 - When you step out of a shower, the temperature in...Ch. 6 - A fuel cell is an electrochemical device in which...Ch. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - An air conditioner is designed to bring 10.000...Ch. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - A gas stream containing 40.0 mole% hydrogen, 35.0%...Ch. 6 - Prob. 6.34PCh. 6 - In the manufacture of an active pharmaceutical...Ch. 6 - Prob. 6.36PCh. 6 - In the ?nal stage of the manufacturing process...Ch. 6 - Prob. 6.38PCh. 6 - A fuel gas containing methane and ethane is burned...Ch. 6 - A mixture of propane and butane is burned with...Ch. 6 - An important parameter in the design of gas...Ch. 6 - A liquid stream consisting of 12.5 mole% n-butane...Ch. 6 - Nitric acid is a chemical intermediate primarily...Ch. 6 - Prob. 6.44PCh. 6 - Sulfur trioxide (SO3) dissolves in and reacts with...Ch. 6 - State whether you would use Raoult’s law or Henrys...Ch. 6 - A gas containing nitrogen, benzene, and toluene is...Ch. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - A conelation for methane solubility in...Ch. 6 - Prob. 6.51PCh. 6 - The constituent partial pressures of a gas in...Ch. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Nitrogen is bubbled through a liquid mixture that...Ch. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - The feed to a distillation column (sketched below)...Ch. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.70PCh. 6 - A methanol-water feed stream is introduced to a...Ch. 6 - Prob. 6.72PCh. 6 - In this problem you will use a spreadsheet to...Ch. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Acetaldehyde is synthesized by the catalytic...Ch. 6 - Dehydration of natural gas is necessary to prevent...Ch. 6 - A two-unit process is used to separate H2S from a...Ch. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - A solution containing 100 lbm KNO3/100 Ibm H2O at...Ch. 6 - A 10.0 wt% aqueous solution of sodium chloride is...Ch. 6 - Potassium dichromate (K2Cr2O7) is to be recovered...Ch. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Sodium bicarbonate is synthesized by reacting...Ch. 6 - An ore containing 90 wt% MgSO4(H2O and the balance...Ch. 6 - An aqueous waste stream leaving a process contains...Ch. 6 - A solution of diphenyl (MW = 154.2) in benzene is...Ch. 6 - An aqueous solution of urea (MW = 60.06) freezes...Ch. 6 - Prob. 6.94PCh. 6 - Derive Equation 6.54 for the boiling-point...Ch. 6 - Prob. 6.96PCh. 6 - A stream of 5.00 wt% oleic acid in cottonseed oil...Ch. 6 - Benzene and hexane are being considered as...Ch. 6 - Acetone is lo be extracted with n-hexane from a...Ch. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - Five kilograms of a 30 wt% acetone70% water...Ch. 6 - An aqueous acetone solution is fed at a rate of...Ch. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Air at 25°C and 1 atm with a relative humidity of...Ch. 6 - Prob. 6.107PCh. 6 - Prob. 6.108PCh. 6 - Various amounts of activated carbon were added to...

    Additional Science Textbook Solutions

    Find more solutions based on key concepts
    Knowledge Booster
    Background pattern image
    Chemistry
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
    Similar questions
    SEE MORE QUESTIONS
    Recommended textbooks for you
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Mod-01 Lec-23 Degrees of freedom analysis; Author: nptelhrd;https://www.youtube.com/watch?v=c4h85JjrkzQ;License: Standard YouTube License, CC-BY
    Introduction to Degrees of Freedom; Author: LearnChemE;https://www.youtube.com/watch?v=tW1ft4y5fQY;License: Standard Youtube License