BuyFindarrow_forward

Chemistry & Chemical Reactivity

10th Edition
John C. Kotz + 3 others
ISBN: 9781337399074

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry & Chemical Reactivity

10th Edition
John C. Kotz + 3 others
ISBN: 9781337399074
Textbook Problem

Manganese is found as MnO2 in deep ocean deposits.

  1. (a) Depict the electron configuration of this element using the noble gas notation and an orbital box diagram.
  2. (b) Using an orbital box diagram, show the electrons beyond those of the preceding noble gas for Mn4+.
  3. (c) Is Mn4+ paramagnetic?
  4. (d) How many unpaired electrons does the Mn4+ ion have?

(a)

Interpretation Introduction

Interpretation:

The electronic configuration of Manganese has to be depicted using its orbital notation box and noble gas electron filling methods.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.

The important there rules for electronic configuration given below:

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

Explanation

Let us consider the orbital filling method of Manganese (Mn) element

  AtomicnumberofManganese(Mn)=25spdfwith orbtital notation=[1s22s22p63s23p63d54s2Orbital filling method       1s22s22p63s2

(b)

Interpretation Introduction

Interpretation:

The electronic configuration of Manganese ion (Mn4+) has to be depicted using its orbital notation box and noble gas electron filling methods.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.

The important there rules for electronic configuration given below:

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

(c)

Interpretation Introduction

Interpretation:

Mn4+ ion is paramagnetic or not has to be predicted.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.

The important there rules for electronic configuration given below:

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

(d)

Interpretation Introduction

Interpretation:

The number of unpaired electrons the Mn4+ion possess has to be predicted.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.

The important there rules for electronic configuration given below:

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

T-cells are immune cells that "read" and "remember" chemical messages to identify future invaders. T F

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

In what ways do melting glaciers become a problem?

Fundamentals of Physical Geography

___ is the actual path length. (2.2)

An Introduction to Physical Science

What is blood plasma, and what is its function?

Human Biology (MindTap Course List)

-107 Which type of nucleic acid molecule is the largest?

Introduction to General, Organic and Biochemistry

Where should the police car in Figure 6-9 have parked to make a good measurement?

Horizons: Exploring the Universe (MindTap Course List)

List the differences between mitosis and meiosis in the following chart:

Human Heredity: Principles and Issues (MindTap Course List)

Complete the following reactions: a. b. c.CH3SSCH2CH3+2(H)

Chemistry for Today: General, Organic, and Biochemistry